ﻻ يوجد ملخص باللغة العربية
This work builds a novel point process and tools to use the Hawkes process with interval-censored data. Such data records the aggregated counts of events solely during specific time intervals -- such as the number of patients admitted to the hospital or the volume of vehicles passing traffic loop detectors -- and not the exact occurrence time of the events. First, we establish the Mean Behavior Poisson (MBP) process, a novel Poisson process with a direct parameter correspondence to the popular self-exciting Hawkes process. The event intensity function of the MBP is the expected intensity over all possible Hawkes realizations with the same parameter set. We fit MBP in the interval-censored setting using an interval-censored Poisson log-likelihood (IC-LL). We use the parameter equivalence to uncover the parameters of the associated Hawkes process. Second, we introduce two novel exogenous functions to distinguish the exogenous from the endogenous events. We propose the multi-impulse exogenous function when the exogenous events are observed as event time and the latent homogeneous Poisson process exogenous function when the exogenous events are presented as interval-censored volumes. Third, we provide several approximation methods to estimate the intensity and compensator function of MBP when no analytical solution exists. Fourth and finally, we connect the interval-censored loss of MBP to a broader class of Bregman divergence-based functions. Using the connection, we show that the current state of the art in popularity estimation (Hawkes Intensity Process (HIP) (Rizoiu et al.,2017b)) is a particular case of the MBP process. We verify our models through empirical testing on synthetic data and real-world data. We find that on real-world datasets that our MBP process outperforms HIP for the task of popularity prediction.
Asynchronous events on the continuous time domain, e.g., social media actions and stock transactions, occur frequently in the world. The ability to recognize occurrence patterns of event sequences is crucial to predict which typeof events will happen
We propose a novel framework for modeling multiple multivariate point processes, each with heterogeneous event types that share an underlying space and obey the same generative mechanism. Focusing on Hawkes processes and their variants that are assoc
Hawkes processes are a class of point processes that have the ability to model the self- and mutual-exciting phenomena. Although the classic Hawkes processes cover a wide range of applications, their expressive ability is limited due to three key hyp
We consider the problem of sequentially allocating resources in a censored semi-bandits setup, where the learner allocates resources at each step to the arms and observes loss. The loss depends on two hidden parameters, one specific to the arm but in
As a tool for capturing irregular temporal dependencies (rather than resorting to binning temporal observations to construct time series), Hawkes processes with exponential decay have seen widespread adoption across many application domains, such as