ﻻ يوجد ملخص باللغة العربية
Hawkes processes are a class of point processes that have the ability to model the self- and mutual-exciting phenomena. Although the classic Hawkes processes cover a wide range of applications, their expressive ability is limited due to three key hypotheses: parametric, linear and homogeneous. Recent work has attempted to address these limitations separately. This work aims to overcome all three assumptions simultaneously by proposing the flexible state-switching Hawkes processes: a flexible, nonlinear and nonhomogeneous variant where a state process is incorporated to interact with the point processes. The proposed model empowers Hawkes processes to be applied to time-varying systems. For inference, we utilize the latent variable augmentation technique to design two efficient Bayesian inference algorithms: Gibbs sampler and mean-field variational inference, with analytical iterative updates to estimate the posterior. In experiments, our model achieves superior performance compared to the state-of-the-art competitors.
Asynchronous events on the continuous time domain, e.g., social media actions and stock transactions, occur frequently in the world. The ability to recognize occurrence patterns of event sequences is crucial to predict which typeof events will happen
We propose a novel framework for modeling multiple multivariate point processes, each with heterogeneous event types that share an underlying space and obey the same generative mechanism. Focusing on Hawkes processes and their variants that are assoc
We give a general Gaussian bound for the first chaos (or innovation) of point processes with stochastic intensity constructed by embedding in a bivariate Poisson process. We apply the general result to nonlinear Hawkes processes, providing quantitative central limit theorems.
This work builds a novel point process and tools to use the Hawkes process with interval-censored data. Such data records the aggregated counts of events solely during specific time intervals -- such as the number of patients admitted to the hospital
The origin(s) of the ubiquity of Zipfs law (an inverse power law form for the probability density function (PDF) with exponent $1+1$) is still a matter of fascination and investigation in many scientific fields from linguistic, social, economic, comp