ﻻ يوجد ملخص باللغة العربية
HD 163296 is a Herbig Ae star that underwent a dramatic $sim$0.8 magnitude drop in brightness in the V photometric band in 2001 and a brightening in the near-IR in 2002. Because the star possesses Herbig-Haro objects travelling in outflowing bipolar jets, it was suggested that the drop in brightness was due to a clump of dust entrained in a disk wind, blocking the line-on-sight toward the star. In order to quantify this hypothesis, we investigated the brightness drop at visible wavelengths and the brightening at near-IR wavelengths of HD 163296 using the Monte Carlo Radiative Transfer Code, HOCHUNK3D. We created three models to understand the events. Model 1 describes the quiescent state of the system. Model 2 describes the change in structure that led to the drop in brightness in 2001. Model 3 describes the structure needed to produce the observed 2002 brightening of the near-IR wavelengths. Models 2 and 3 utilize a combination of a disk wind and central bipolar flow. By introducing a filled bipolar cavity in Models 2 and 3, we were able to successfully simulate a jet-like structure for the star with a disk wind and created the drop and subsequent increase in brightness of the system. On the other hand, when the bipolar cavity is not filled, Model 1 replicates the quiescent state of the system.
Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows wit
The physical processes occurring within the inner few astronomical units of proto-planetary disks surrounding Herbig Ae stars are crucial to setting the environment in which the outer planet-forming disk evolves and put critical constraints on the pr
We present near-IR and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASAs Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral en
We present thirteen epochs of near-infrared (0.8-5 micron) spectroscopic observations of the pre-transitional, gapped disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (including Br gamma, Pa beta, and the 0.8446 micron line of
Herbig Ae/Be stars are intermediate-mass pre-main sequence stars surrounded by circumstellar dust disks. Some are observed to produce jets, whose appearance as a sequence of shock fronts (knots) suggests a past episodic outflow variability. This jet