ﻻ يوجد ملخص باللغة العربية
Herbig Ae/Be stars are intermediate-mass pre-main sequence stars surrounded by circumstellar dust disks. Some are observed to produce jets, whose appearance as a sequence of shock fronts (knots) suggests a past episodic outflow variability. This jet fossil record can be used to reconstruct the outflow history. We present the first optical to near-infrared (NIR) VLT/X-shooter spectra of the jet from the Herbig Ae star HD 163296. We determine physical conditions in the knots, as well as their kinematic launch epochs. Knots are formed simultaneously on either side of the disk, with a regular interval of ~16 yr. The velocity dispersion versus jet velocity and the energy input are comparable in both lobes. However, the mass loss rate, velocity, and shock conditions are asymmetric. We find Mjet/Macc ~ 0.01-0.1, consistent with magneto-centrifugal jet launching models. No evidence for dust is found in the high-velocity jet, suggesting it is launched within the sublimation radius (<0.5 au). The jet inclination measured from proper motions and radial velocities confirms it is perpendicular to the disk. A tentative relation is found between the structure of the jet and the photometric variability of the source. Episodes of NIR brightening were previously detected and attributed to a dusty disk wind. We report for the first time significant optical fadings lasting from a few days up to a year, coinciding with the NIR brightenings. These are likely caused by dust lifted high above the disk plane; this supports the disk wind scenario. The disk wind is launched at a larger radius than the high-velocity atomic jet, although their outflow variability may have a common origin. No significant relation between outflow and accretion variability could be established. Our findings confirm that this source undergoes periodic ejection events, which may be coupled with dust ejections above the disk plane.
The more massive counterparts of T Tauri stars, Herbig Ae/Be stars, are known to vary in a complex way with no variability mechanism clearly identified. We attempt to characterize the optical variability of HD~37806 (MWC 120) on time scales ranging b
Chandra X-ray imaging spectroscopy of the nearby Herbig Ae star HD 163296 at 100 AU angular resolution is reported. A point-like, soft (kT~0.5 keV), emission-line source is detected at the location of the star with an X-ray luminosity of 4.0e29 erg/s
We present two new epochs of Hubble Space Telescope/Space Telescope Imaging Spectrograph coronagraphic imaging, along with multi-epoch optical, near-IR, and radio monitoring, of the HD 163296 system. We find ansae features identified in earlier epoch
The physical processes occurring within the inner few astronomical units of proto-planetary disks surrounding Herbig Ae stars are crucial to setting the environment in which the outer planet-forming disk evolves and put critical constraints on the pr
A new class of pre-main sequence objects has been recently identified as pre-transitional disks. They present near-infrared excess coupled to a flux deficit at about 10 microns and a rising mid-infrared and far-infrared spectrum. These features sugge