ترغب بنشر مسار تعليمي؟ اضغط هنا

Variability of Disk Emission in Pre-Main Sequence and Related Stars. II. Variability in the Gas and Dust Emission of the Herbig Fe Star SAO 206462

249   0   0.0 ( 0 )
 نشر من قبل Michael Sitko
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present thirteen epochs of near-infrared (0.8-5 micron) spectroscopic observations of the pre-transitional, gapped disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (including Br gamma, Pa beta, and the 0.8446 micron line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 x 10^-8 solar masses per year was derived from the Br gamma and Pa beta lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only ~30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 microns was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on time scales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magnetorotational) would operate there on longer time scales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on time scales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer time scales that have been sampled so far.



قيم البحث

اقرأ أيضاً

HD 163296 is a Herbig Ae star that underwent a dramatic $sim$0.8 magnitude drop in brightness in the V photometric band in 2001 and a brightening in the near-IR in 2002. Because the star possesses Herbig-Haro objects travelling in outflowing bipolar jets, it was suggested that the drop in brightness was due to a clump of dust entrained in a disk wind, blocking the line-on-sight toward the star. In order to quantify this hypothesis, we investigated the brightness drop at visible wavelengths and the brightening at near-IR wavelengths of HD 163296 using the Monte Carlo Radiative Transfer Code, HOCHUNK3D. We created three models to understand the events. Model 1 describes the quiescent state of the system. Model 2 describes the change in structure that led to the drop in brightness in 2001. Model 3 describes the structure needed to produce the observed 2002 brightening of the near-IR wavelengths. Models 2 and 3 utilize a combination of a disk wind and central bipolar flow. By introducing a filled bipolar cavity in Models 2 and 3, we were able to successfully simulate a jet-like structure for the star with a disk wind and created the drop and subsequent increase in brightness of the system. On the other hand, when the bipolar cavity is not filled, Model 1 replicates the quiescent state of the system.
We present near-IR and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASAs Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral en ergy distribution reveals variability of up to 45% between ~1.5-10 {mu}m over a maximum timescale of 10 years. All observations known to us separate into two distinct states corresponding to a high near-IR state in the pre-2000 epoch and a low state in the post-2000 epoch, indicating activity within the <1 AU region of the disk. Through analysis of the Pa {beta} and Br {gamma} lines in our data we derive a mass accretion rate in May 2013 of (1.5 - 2.7) x 10^-9 Msun/yr. We present a theoretical modeling analysis of the disk in HD 169142 using Monte-Carlo radiative transfer simulation software to explore the conditions and perhaps signs of planetary formation in our collection of 24 years of observations. We find that shifting the outer edge (r = 0.3 AU) of the inner disk by 0.05 AU toward the star (in simulation of accretion and/or sculpting by forming planets) successfully reproduces the shift in NIR flux. We establish that the ~40-70 AU dark ring imaged in the NIR by Quanz et al. (2013) and Momose et al. (2013) and at 7 mm by Osorio et al. (2014) may be reproduced with a 30% scaled density profile throughout the region, strengthening the link to this structure being dynamically cleared by one or more planetary mass bodies.
Infrared photometry and spectroscopy covering a time span of a quarter century are presented for HD 31648 (MWC 480) and HD 163296 (MWC 275). Both are isolated Herbig Ae stars that exhibit signs of active accretion, including driving bipolar flows wit h embedded Herbig-Haro (HH) objects. HD 163296 was found to be relatively quiescent photometrically in its inner disk region, with the exception of a major increase in emitted flux in a broad wavelength region centered near 3 microns in 2002. In contrast, HD 31648 has exhibited sporadic changes in the entire 3-13 micron region throughout this span of time. In both stars the changes in the 1-5 micron flux indicate structural changes in the region of the disk near the dust sublimation zone, possibly causing its distance from the star to vary with time. Repeated thermal cycling through this region will result in the preferential survival of large grains, and an increase in the degree of crystallinity. The variability observed in these objects has important consequences for the interpretation of other types of observations. For example, source variability will compromise models based on interferometry measurements unless the interferometry observations are accompanied by nearly-simultaneous photometric data.
Pre-main sequence (PMS) stars evolve into main sequence (MS) phase over a period of time. Interestingly, we found a scarcity of studies in existing literature that examines and attempts to better understand the stars in PMS to MS transition phase. Th e purpose of the present study is to detect such rare stars, which we named as Transition Phase (TP) candidates - stars evolving from the PMS to the MS phase. We identified 98 TP candidates using photometric analysis of a sample of 2167 classical Be (CBe) and 225 Herbig Ae/Be (HAeBe) stars. This identification is done by analyzing the near- and mid-infrared excess and their location in the optical color-magnitude diagram. The age and mass of 58 of these TP candidates are determined to be between 0.1-5 Myr and 2-10.5 M$_odot$, respectively. The TP candidates are found to possess rotational velocity and color excess values in between CBe and HAeBe stars, which is reconfirmed by generating a set of synthetic samples using the machine learning approach.
Pre-main sequence stars are variable sources. In diskless stars this variability is mainly due to the rotational modulation of dark photospheric spots and active regions, as in main sequence stars even if associated with a stronger magnetic activity. Aims. We aim at analyzing the simultaneous optical and X-ray variability in these stars to unveil how the activity in the photosphere is connected with that in the corona, to identify the dominant surface magnetic activity, and to correlate our results with stellar properties, such as rotation and mass. Methods. We analyzed the simultaneous optical and X-ray variability in stars without inner disks (e.g., class III objects and stars with transition disks) in NGC 2264 from observations obtained with Chandra/ACIS-I and CoRoT as part of the Coordinated Synoptic Investigation of NGC 2264. We searched for those stars whose optical and X-ray variability is correlated, anti-correlated, or not correlated by sampling their optical and X-ray light curves in suitable time intervals and studying the correlation between the flux observed in optical and in X-rays. We then studied how this classification is related with stellar properties. Results. Starting from a sample of 74 class III/transition disk (TD) stars observed with CoRoT and detected with Chandra with more than 60 counts, we selected 16 stars whose optical and X-ray variability is anti-correlated, 11 correlated, and 17 where there is no correlation. The remaining stars did not fall in any of these groups. We interpreted the anti-correlated optical and X-ray variability as typical of spot-dominated sources, due to the rotational modulation of photospheric spots spatially coincident to coronal active regions, and correlated variability typical of faculae-dominated sources, where the brightening due to faculae is dominant over the darkening due to spots. [Conclusions not shown in the pre-print]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا