ﻻ يوجد ملخص باللغة العربية
Perhaps the largest debate in network Ecology, the emergence of structural patterns stands out as a multifaceted problem. To the methodological challenges -- pattern identification, statistical significance -- one has to add the relationship between candidate architectures and dynamical performance. In the case of mutualistic communities, the debate revolves mostly around two structural arrangements (nestedness and modularity) and two requirements for persistence, namely feasibility and stability. So far, it is clear that the former is strongly related to nestedness, while the latter is enhanced in modular systems. Adding to this, it has recently become clear that nestedness and modularity are antagonistic patterns -- or, at the very least, their coexistence in a single system is problematic. In this context, this work addresses the role of the interaction architecture in the emergence and maintenance of both properties, introducing the idea of hybrid architectural configurations. Specifically, we examine in-block nestedness, compound by disjoint subsets of species (modules) with internal nested organization, and prove that it grants a balanced trade-off between stability and feasibility. Remarkably, we analyze a large amount of empirical communities and find that a relevant fraction of them exhibits a marked in-block nested structure. We elaborate on the implications of these results, arguing that they provide new insights about the key properties ruling community assembly.
Mutualistic networks have attracted increasing attention in the ecological literature in the last decades as they play a key role in the maintenance of biodiversity. Here, we develop an analytical framework to study the structural stability of these
We study how large functional networks can grow stably under possible cascading overload failures and evaluated the maximum stable network size above which even a small-scale failure would cause a fatal breakdown of the network. Employing a model of
One of the most important tasks of urban and hazard planning is to mitigate the damages and minimize the costs of the recovery process after catastrophic events. The rapidity and the efficiency of the recovery process are commonly referred to as resi
Link failures repeatedly induce large-scale outages in power grids and other supply networks. Yet, it is still not well understood, which links are particularly prone to inducing such outages. Here we analyze how the nature and location of each link
Understanding the resilience of infrastructures such as transportation network has significant importance for our daily life. Recently, a homogeneous spatial network model was developed for studying spatial embedded networks with characteristic link