ترغب بنشر مسار تعليمي؟ اضغط هنا

Various facets of magnetic charge correlation: Micromagnetic and distorted waveBorn approximation simulations study

112   0   0.0 ( 0 )
 نشر من قبل George Yumnam
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emergent concept of magnetic charge quasi-particle provides a new realm to study the evolution of magnetic properties in two-dimensional artificially frustrated magnets. We report on the exploration of magnetic phases due to various magnetic charge correlation using the complementary numerical techniques of micromagnetic and distorted wave Born approximation simulations in artificial permalloy honeycomb lattice. The honeycomb element length varies between 10 nm and 100 nm, while the width and thickness are kept within the single domain limit. In addition to the charge ordered loop state, we observe disordered charge arrangement, characterized by the random distribution of $pm$Q charges, in single domain size honeycomb lattice. As the length of honeycomb element increases, low multiplicity magnetic charges tend to form contiguous bands in thinner lattice. Thin honeycomb lattice with 100 nm element length exhibits a perfect spin ice pattern, which remains unaffected to the modest increase in the width of element size. We simulate scattering profiles under the pretext of distorted wave Born approximation formalism for the micromagnetic phases. The results are expected to provide useful guidance in the experimental investigation of magnetic phases in artificial honeycomb magnet.



قيم البحث

اقرأ أيضاً

Using Brillouin spectroscopy, the first observation has been made of the band structures of nanostructured defect magnonic crystals. The samples are otherwise one-dimensional periodic arrays of equal-width Ni80Fe20 and cobalt nanostripes, where the d efects are stripes of a different width. A dispersionless defect branch emerges within the bandgap with a frequency tunable by varying the defect stripe width, while the other branches observed are similar to those of a defect-free crystal. Micromagnetic and finite-element simulations performed unveil additional tiny bandgaps and the frequency-dependent localization of the defect mode in the vicinity of the defects.
Artificial spin ice offers the possibility to investigate a variety of dipolar orderings, spin frustrations and ground states. However, the most fascinating aspect is the realization that magnetic charge order can be established without spin order. W e have investigated magnetic dipoles arranged on a honeycomb lattice as a function of applied field, using magnetic force microscopy. For the easy direction with the field parallel to one of the three dipole sublattices we observe at coercivity a maximum of spin frustration and simultaneously a maximum of charge order of magnetic monopoles with alternating charges $pm$ 3.
We perform micromagnetic simulations of the magnetization distribution in inverse opal-like structures (IOLS) made from ferromagnetic materials (nickel and cobalt). It is shown that the unit cell of these complex structures, whose characteristic leng th is approximately 700 nm, can be divided into a set of structural elements some of which behave like Ising-like objects. A spin-ice behavior of IOLS is observed in a broad range of external magnetic fields. Numerical results describe successfully the experimental hysteresis curves of the magnetization in Ni- and Co-based IOLS. We conclude that ferromagnetic IOLS can be considered as the first realization of three-dimensional artificial spin ice.
Skyrmions are emerging topological spin structures that are potentially revolutionary for future data storage and spintronics applications. The existence and stability of skyrmions in magnetic materials is usually associated to the presence of the Dz yaloshinskii-Moriya interaction (DMI) in bulk magnets or in magnetic thin films lacking inversion symmetry. While some methods have already been proposed to generate isolated skyrmions in thin films with DMI, a thorough study of the conditions under which the skyrmions will remain stable in order to be manipulated in an integrated spintronic device are still an open problem. The stability of such structures is believed to be a result of ideal combinations of perpendicular magnetic anisotropy (PMA), DMI and the interplay between geometry and magnetostatics. In the present work we show some micromagnetic results supporting previous experimental observations of magnetic skyrmions in spin-valve stacks with a wide range of DMI values. Using micromagnetic simulations of cobalt-based disks, we obtain the magnetic ground state configuration for several values of PMA, DMI and geometric parameters. Skyrmion numbers, corresponding to the topological charge, are calculated in all cases and confirm the occurrence of isolated, stable, axially symmetric skyrmions for several combinations of DMI and anisotropy constant. The stability of the skyrmions in disks is then investigated under magnetic field and spin-polarized current, in finite temperature, highlighting the limits of applicability of these spin textures in spintronic devices.
The antivortex is a fundamental magnetization structure which is the topological counterpart of the well-known magnetic vortex. We study here the ultrafast dynamic behavior of an isolated antivortex in a patterned Permalloy thin-film element. Using m icromagnetic simulations we predict that the antivortex response to an ultrashort external field pulse is characterized by the production of a new antivortex as well as of a temporary vortex, followed by an annihilation process. These processes are complementary to the recently reported response of a vortex and, like for the vortex, lead to the reversal of the orientation of the antivortex core region. In addition to its fundamental interest, this dynamic magnetization process could be used for the generation and propagation of spin waves for novel logical circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا