ﻻ يوجد ملخص باللغة العربية
The antivortex is a fundamental magnetization structure which is the topological counterpart of the well-known magnetic vortex. We study here the ultrafast dynamic behavior of an isolated antivortex in a patterned Permalloy thin-film element. Using micromagnetic simulations we predict that the antivortex response to an ultrashort external field pulse is characterized by the production of a new antivortex as well as of a temporary vortex, followed by an annihilation process. These processes are complementary to the recently reported response of a vortex and, like for the vortex, lead to the reversal of the orientation of the antivortex core region. In addition to its fundamental interest, this dynamic magnetization process could be used for the generation and propagation of spin waves for novel logical circuits.
This paper presents the results of simulations of the magnetization field {it ac} response (at $2$ to $12$ GHz) of various submicron ferrite particles (cylindrical dots). The ferrites in the present simulations have the spinel structure, expressed he
Here we describe the development of the MALTS software which is a generalised tool that simulates Lorentz Transmission Electron Microscopy (LTEM) contrast of thin magnetic nanostructures. Complex magnetic nanostructures typically have multiple stable
The switching dynamics of a single-domain BiFeO3/CoFe heterojunction is modeled and key parameters such as interface exchange coupling coefficient are extracted from experimental results. The lower limit of the magnetic order response time of CoFe in
Ultrafast spectroscopies can access the dynamics of electrons and nuclei at short timescales, shedding light on nonequilibrium phenomena in materials. However, development of accurate calculations to interpret these experiments has lagged behind as w
We study the heat-induced magnetization dynamics in a toy model of a ferrimagnetic alloy, which includes localized spins antiferromagnetically coupled to an itinerant carrier system with a Stoner gap. We determine the one-particle spin-density matrix