ﻻ يوجد ملخص باللغة العربية
We perform micromagnetic simulations of the magnetization distribution in inverse opal-like structures (IOLS) made from ferromagnetic materials (nickel and cobalt). It is shown that the unit cell of these complex structures, whose characteristic length is approximately 700 nm, can be divided into a set of structural elements some of which behave like Ising-like objects. A spin-ice behavior of IOLS is observed in a broad range of external magnetic fields. Numerical results describe successfully the experimental hysteresis curves of the magnetization in Ni- and Co-based IOLS. We conclude that ferromagnetic IOLS can be considered as the first realization of three-dimensional artificial spin ice.
Geometrical frustration arised in spin ices leads to fascinating emergent physical properties. Nowadays there is a wide diversity of the artificial structures, mimicking spin ice at the nanoscale and demonstrating some new effects. Most of the nanosc
Harnessing high-frequency spin dynamics in three-dimensional (3D) nanostructures may lead to paradigm-shifting, next generation devices including high density spintronics and neuromorphic systems. Despite remarkable progress in fabrication, the measu
Skyrmions are emerging topological spin structures that are potentially revolutionary for future data storage and spintronics applications. The existence and stability of skyrmions in magnetic materials is usually associated to the presence of the Dz
We present ultrafast optical switching experiments on 3D photonic band gap crystals. Switching the Si inverse opal is achieved by optically exciting free carriers by a two-photon process. We probe reflectivity in the frequency range of second order B
The emergent concept of magnetic charge quasi-particle provides a new realm to study the evolution of magnetic properties in two-dimensional artificially frustrated magnets. We report on the exploration of magnetic phases due to various magnetic char