ترغب بنشر مسار تعليمي؟ اضغط هنا

Determination of Vegas rotational velocity based on the Fourier analysis of spectral line profiles

99   0   0.0 ( 0 )
 نشر من قبل Yoichi Takeda
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yoichi Takeda




اسأل ChatGPT حول البحث

While it is known that the sharp-line star Vega (vsini ~ 20km/s) is actually a rapid rotator seen nearly pole-on with low i (< 10 deg), no consensus has yet been accomplished regarding its intrinsic rotational velocity (v_e), for which rather different values have been reported so far. Methodologically, detailed analysis of spectral line profiles is useful for this purpose, since they reflect more or less the v_e-dependent gravitational darkening effect. However, direct comparison of observed and theoretically simulated line profiles is not necessarily effective in practice, where the solution is sensitively affected by various conditions and the scope for combining many lines is lacking. In this study, determination of Vegas v_e was attempted based on an alternative approach making use of the first zero (q_1) of the Fourier transform of each line profile, which depends upon K (temperature sensitivity parameter differing from line to line) and v_e. It turned out that v_e and vsini could be separately established by comparing the observed q_1^obs and calculated q_1^cal values for a number of lines of different K. Actually, independent analysis applied to two line sets (49 Fe I lines and 41 Fe II lines) yielded results reasonably consistent with each other. The final parameters of Vegas rotation were concluded as vsini = 21.6 (+/- 0.3) km/s, v_e = 195 (+/- 15) km/s, and i = 6.4 (+/- 0.5) deg.



قيم البحث

اقرأ أيضاً

95 - Yoichi Takeda 2019
It is known that stellar differential rotation can be detected by analyzing the Fourier transform of spectral line profiles, since the ratio of the 1st- and 2nd-zero frequencies is a useful indicator. This approach essentially relies on the conventio nal formulation that the observed flux profile is expressible as a convolution of the rotational broadning function and the intrinsic profile, which implicitly assumes that the local intensity profile does not change over disk. Although this postulation is unrealistic in the strict sense, how the result is affected by this approximation is still unclear. In order to examine this problem, profiles of several lines (showing different center-limb variations) were simulated using a model atmosphere corresponding to a mid-F dwarf by integrating intensity profiles for various combinations of vsini (rot. velocity), alpha (diff. degree), and i (inc. angle), and their Fourier transforms were computed to check whether zeros are detected at the predicted positions or not. For this comparison purpose, a large grid of standard rotational broadening functions and their transforms/zeros were also calculated. It turned out that the situation criticaly depends on vsini: In case of vsini>~20km/s where rotational broadening is predominant over other line broadening velocities (typically several km/s), the 1st/2nd zeros of the transform are confirmed almost at the expected positions. In contrast, deviations begin to appear as vsini is lowered, and the zero features of the transform are totally different from the expectation at vsini as low as ~10km/s, which means that the classical formulation is no more valid. Accordingly, while the zero-frequency approach is safely applicable to studying differential rotation in the former broader-line case, it would be difficult to practice for the latter sharp-line case.
While the effect of rotation on spectral lines is complicated in rapidly-rotating stars because of the appreciable gravity-darkening effect differing from line to line, it is possible to make use of this line-dependent complexity to separately determ ine the equatorial rotation velocity (ve) and the inclination angle (i) of rotational axis. Although line-widths of spectral lines were traditionally used for this aim, we tried in this study to apply the Fourier method, which utilizes the unambiguously determinable first-zero frequency (sigma1) in the Fourier transform of line profile. Equipped with this technique, we analyzed the profiles of HeI 4471 and MgII 4481 lines of six rapidly-rotating (vesini~150-300km/s) late B-type stars, while comparing them with the theoretical profiles simulated on a grid of models computed for various combination of (ve, i). According to our calculation, sigma1 tends to be larger than the classical value for given vesini. This excess progressively grows with an increase in ve, and is larger for the He line than the Mg line, which leads to sigma1He > sigma1Mg. It was shown that ve and i are separately determinable from the intersection of two loci (sets of solutions reproducing the observed sigma1 for each line) on the ve vs. i plane. Yet, line profiles alone are not sufficient for their unique discrimination, for which photometric information (such as colors) needs to be simultaneously employed.
196 - Yoichi Takeda 2020
With an aim of getting information on the equatorial rotation velocity (v_e) of Sirius A separated from the inclination effect (sin i), a detailed profile analysis based on the Fourier transform technique was carried out for a large number of spectra l lines, while explicitly taking into account the line-by-line differences in the centre-limb behaviours and the gravity darkening effect (which depend on the physical properties of each line) based on model calculations. The simulations showed that how the 1st-zero frequencies (q_1) of Fourier transform amplitudes depends on v_e is essentially determined by the temperature-sensitivity parameter (K) differing from line to line, and that Fe I lines (especially those of very weak ones) are more sensitive to v_e than Fe II lines. The following conclusions were drawn by comparing the theoretical and observed q_1 values for many Fe I and Fe II lines: (1) The projected rotational velocity (vsini) for Sirius A is fairly well established at 16.3 (+/-0.1) km/s by requiring that both Fe I and Fe II lines yield consistent results. (2) Although precise separation of v_e and i is difficult, v_e is concluded to be in the range of 16 < v_e < 30-40 km/s, which corresponds to 25 < i(deg) < 90. Accordingly, Sirius A is an intrinsically slow rotator for an A-type star, being consistent with its surface chemical peculiarity.
We fit every emission line in the high-resolution Chandra grating spectrum of zeta Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of sixteen lines or line comple xes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau_* = kappa*Mdot/4{pi}R_{ast}v_{infty}, and place confidence limits on this parameter. These sixteen lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau_* with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau_*, reflected in the rather modest asymmetry in the line profiles, can moreover all be fit simultaneously by simply assuming a moderate mass-loss rate of 3.5 pm 0.3 times 10^{-6} Msun/yr, without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of two. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H-alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and galactic evolution.
The hot WN star WR2 (HD6327) has been claimed to have many singular characteristics. To explain its unusually rounded and relatively weak emission line profiles, it has been proposed that WR2 is rotating close to break-up with a magnetically confined wind. Alternatively, the line profiles could be explained by the dilution of WR2s spectrum by that of a companion. In this paper, we present a study of WR2 using near-infrared AO imaging and optical spectroscopy and polarimetry. Our spectra reveal the presence of weak photospheric absorption lines from a ~B2.5-4V companion, which however contributes only ~5-10% to the total light, suggesting that the companion is a background object. Therefore, its flux cannot be causing any significant dilution of the WR stars emission lines. The absence of intrinsic linear continuum polarization from WR2 does not support the proposed fast rotation. Our Stokes V spectrum was not of sufficient quality to test the presence of a moderately strong organized magnetic field but our new modelling indicates that to confine the wind the putative magnetic field must be significantly stronger than was previously suggested sufficiently strong as to make its presence implausible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا