ﻻ يوجد ملخص باللغة العربية
With an aim of getting information on the equatorial rotation velocity (v_e) of Sirius A separated from the inclination effect (sin i), a detailed profile analysis based on the Fourier transform technique was carried out for a large number of spectral lines, while explicitly taking into account the line-by-line differences in the centre-limb behaviours and the gravity darkening effect (which depend on the physical properties of each line) based on model calculations. The simulations showed that how the 1st-zero frequencies (q_1) of Fourier transform amplitudes depends on v_e is essentially determined by the temperature-sensitivity parameter (K) differing from line to line, and that Fe I lines (especially those of very weak ones) are more sensitive to v_e than Fe II lines. The following conclusions were drawn by comparing the theoretical and observed q_1 values for many Fe I and Fe II lines: (1) The projected rotational velocity (vsini) for Sirius A is fairly well established at 16.3 (+/-0.1) km/s by requiring that both Fe I and Fe II lines yield consistent results. (2) Although precise separation of v_e and i is difficult, v_e is concluded to be in the range of 16 < v_e < 30-40 km/s, which corresponds to 25 < i(deg) < 90. Accordingly, Sirius A is an intrinsically slow rotator for an A-type star, being consistent with its surface chemical peculiarity.
While it is known that the sharp-line star Vega (vsini ~ 20km/s) is actually a rapid rotator seen nearly pole-on with low i (< 10 deg), no consensus has yet been accomplished regarding its intrinsic rotational velocity (v_e), for which rather differe
Oxygen sequence Wolf-Rayet stars (WO) are thought to be the final evolution phase of some high mass stars, as such they may be the progenitors of type Ic SNe as well as potential progenitors of broad-lined Ic and long gamma-ray bursts. We present the
We address the origin of the observed bimodal rotational distribution of stars in massive young and intermediate age stellar clusters. This bimodality is seen as split main sequences at young ages and also has been recently directly observed in the $
Context. Abundance anomalies observed in a fraction of A and B stars of both Pop I and II are apparently related to internal particle transport. Aims. Using available constraints from Sirius A, we wish to determine how well evolutionary models includ
Modeling the submillimeter to centimeter emission of stars is challenging due to a lack of sensitive observations at these long wavelengths. We launched an ongoing campaign to obtain new observations entitled Measuring the Emission of Stellar Atmosph