ترغب بنشر مسار تعليمي؟ اضغط هنا

A mass-loss rate determination for zeta Puppis from the quantitative analysis of X-ray emission line profiles

158   0   0.0 ( 0 )
 نشر من قبل David H. Cohen
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We fit every emission line in the high-resolution Chandra grating spectrum of zeta Pup with an empirical line profile model that accounts for the effects of Doppler broadening and attenuation by the bulk wind. For each of sixteen lines or line complexes that can be reliably measured, we determine a best-fitting fiducial optical depth, tau_* = kappa*Mdot/4{pi}R_{ast}v_{infty}, and place confidence limits on this parameter. These sixteen lines include seven that have not previously been reported on in the literature. The extended wavelength range of these lines allows us to infer, for the first time, a clear increase in tau_* with line wavelength, as expected from the wavelength increase of bound-free absorption opacity. The small overall values of tau_*, reflected in the rather modest asymmetry in the line profiles, can moreover all be fit simultaneously by simply assuming a moderate mass-loss rate of 3.5 pm 0.3 times 10^{-6} Msun/yr, without any need to invoke porosity effects in the wind. The quoted uncertainty is statistical, but the largest source of uncertainty in the derived mass-loss rate is due to the uncertainty in the elemental abundances of zeta Pup, which affects the continuum opacity of the wind, and which we estimate to be a factor of two. Even so, the mass-loss rate we find is significantly below the most recent smooth-wind H-alpha mass-loss rate determinations for zeta Pup, but is in line with newer determinations that account for small-scale wind clumping. If zeta Pup is representative of other massive stars, these results will have important implications for stellar and galactic evolution.



قيم البحث

اقرأ أيضاً

We present XMM-Newton Reflection Grating Spectrometer observations of pairs of X-ray emission line profiles from the O star Zeta Pup that originate from the same He-like ion. The two profiles in each pair have different shapes and cannot both be cons istently fit by models assuming the same wind parameters. We show that the differences in profile shape can be accounted for in a model including the effects of resonance scattering, which affects the resonance line in the pair but not the intercombination line. This implies that resonance scattering is also important in single resonance lines, where its effect is difficult to distinguish from a low effective continuum optical depth in the wind. Thus, resonance scattering may help reconcile X-ray line profile shapes with literature mass-loss rates.
By quantitatively fitting simple emission line profile models that include both atomic opacity and porosity to the Chandra X-ray spectrum of $zeta$ Pup, we are able to explore the trade-offs between reduced mass-loss rates and wind porosity. We find that reducing the mass-loss rate of $zeta$ Pup by roughly a factor of four, to 1.5 times 10^{-6} M_sun/yr, enables simple non-porous wind models to provide good fits to the data. If, on the other hand, we take the literature mass-loss rate of 6 times 10^{-6} M_sun/yr, then to produce X-ray line profiles that fit the data, extreme porosity lengths -- of $h_{infty} approx 3$ Rstar -- are required. Moreover, these porous models do not provide better fits to the data than the non-porous, low optical depth models. Additionally, such huge porosity lengths do not seem realistic in light of 2-D numerical simulations of the wind instability.
70 - David H. Cohen 2020
New long Chandra grating observations of the O supergiant $zeta$ Pup show not only a brightening of the x-ray emission line flux of 13 per cent in the 18 years since Chandras first observing cycle, but also clear evidence - at more than four sigma si gnificance - of increased wind absorption signatures in its Doppler-broadened x-ray emission line profiles. We demonstrate this with non-parametric analysis of the profiles as well as Gaussian fitting and then use the line-profile model fitting to derive a mass-loss rate of $2.47 pm 0.09 times 10^{-6}$ Msun/yr, which is a 40 per cent increase over the value obtained from the cycle 1 data. The increase in the individual emission line fluxes is greater for short-wavelength lines than long-wavelength lines, as would be expected if a uniform increase in line emission is accompanied by an increase in the wavelength-dependent absorption by the cold wind in which the shock-heated plasma is embedded.
122 - David H. Cohen 2014
We quantitatively investigate the extent of wind absorption signatures in the X-ray grating spectra of all non-magnetic, effectively single O stars in the Chandra archive via line profile fitting. Under the usual assumption of a spherically symmetric wind with embedded shocks, we confirm previous claims that some objects show little or no wind absorption. However, many other objects do show asymmetric and blue shifted line profiles, indicative of wind absorption. For these stars, we are able to derive wind mass-loss rates from the ensemble of line profiles, and find values lower by an average factor of 3 than those predicted by current theoretical models, and consistent with H-alpha if clumping factors of f_cl ~ 20 are assumed. The same profile fitting indicates an onset radius of X-rays typically at r ~ 1.5 R_star, and terminal velocities for the X-ray emitting wind component that are consistent with that of the bulk wind. We explore the likelihood that the stars in the sample that do not show significant wind absorption signatures in their line profiles have at least some X-ray emission that arises from colliding wind shocks with a close binary companion. The one clear exception is zeta Oph, a weak-wind star that appears to simply have a very low mass-loss rate. We also reanalyse the results from the canonical O supergiant zeta Pup, using a solar-metallicity wind opacity model and find Mdot = 1.8 times 10^{-6} M_sun/yr, consistent with recent multi-wavelength determinations.
We aim to (1) set up simple and general analytical expressions to estimate mass-loss rates of evolved stars, and (2) from those calculate estimates for the mass-loss rates of asymptotic giant branch (AGB), red supergiant (RSG), and yellow hypergiant stars in our galactic sample. Rotationally excited lines of CO are a very robust diagnostic in the study of circumstellar envelopes (CSEs). When sampling different layers of the CSE, observations of these molecular lines lead to detailed profiles of kinetic temperature, expansion velocity, and density. A state-of-the-art, nonlocal thermal equilibrium, and co-moving frame radiative transfer code that predicts CO line intensities in the CSEs of late-type stars is used in deriving relations between stellar and molecular-line parameters, on the one hand, and mass-loss rate, on the other. We present analytical expressions for estimating the mass-loss rates of evolved stellar objects for 8 rotational transitions of the CO molecule, apply them to our extensive CO data set covering 47 stars, and compare our results to those of previous studies. Our expressions account for line saturation and resolving of the envelope, thereby allowing accurate determination of very high mass-loss rates. We argue that, for estimates based on a single rotational line, the CO(2-1) transition provides the most reliable mass-loss rate. The mass-loss rates calculated for the AGB stars range from 4x10^-8 Msun/yr up to 8x10^-5 Msun/yr. For RSGs they reach values between 2x10^-7 Msun/yr and 3x10^-4 Msun/yr. The estimates for the set of CO transitions allow time variability to be identified in the mass-loss rate. Possible mass-loss-rate variability is traced for 7 of the sample stars. We find a clear relation between the pulsation periods of the AGB stars and their derived mass-loss rates, with a levelling off at approx. 3x10^-5 Msun/yr for periods exceeding 850 days.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا