ﻻ يوجد ملخص باللغة العربية
The quasi-static strain (QSS) is the product generated by the lattice thermal expansion after ultrafast photo-excitation and the effects of thermal and QSS are inextricable. Nevertheless, the two phenomena with the same relaxation timescale should be treated separately because of their different fundamental actions to the ultrafast spin dynamics. By employing ultrafast Sagnac interferometry and magneto-optical Kerr effect, we quantitatively prove the existence of QSS, which has been disregarded, and decouple two effects counter-acting each other. Through the magnetoelastic energy analysis, rather we show that QSS in ferromagnets plays a governing role on ultrafast spin dynamics, which is opposite to what have been known on the basis of thermal effect. Our demonstration provides an essential way of analysis on ultrafast photo-induced phenomena.
The magnetization orientation of a nanoscale ferromagnet can be manipulated using an electric current via the spin transfer effect. Time domain measurements of nanopillar devices at low temperatures have directly shown that magnetization dynamics and
We develop a new perturbation method for studying quasi-neutral competition in a broad class of stochastic competition models, and apply it to the analysis of fixation of competing strains in two epidemic models. The first model is a two-strain gener
Spin relaxation and decoherence is at the heart of spintronics and spin-based quantum information science. Currently, theoretical approaches that can accurately predict spin relaxation of general solids including necessary scattering pathways and cap
We investigate the ultrafast spin dynamics in an epitaxial hcp(1100) cobalt thin film. By performing pump-probe magneto-optical measurements with the magnetization along either the easy or hard magnetic axis, we determine the demagnetization and reco
A detailed defect energy level map was investigated for heterostructures of 26 unit cells of LaAlO3 on SrTiO3 prepared at a low oxygen partial pressure of 10-6 mbar. The origin is attributed to the presence of dominating oxygen defects in SrTiO3 subs