ﻻ يوجد ملخص باللغة العربية
We investigate the ultrafast spin dynamics in an epitaxial hcp(1100) cobalt thin film. By performing pump-probe magneto-optical measurements with the magnetization along either the easy or hard magnetic axis, we determine the demagnetization and recovery times for the two axes. We observe a 35% slower dynamics along the easy magnetization axis, which we attribute to magneto-crystalline anisotropy of the electron-phonon coupling, supported by our ab initio calculations. This points towards an unambiguous and previously undisclosed role of anisotropic electron-lattice coupling in ultrafast magnetism.
We investigate the spin dynamics driven by terahertz magnetic fields in epitaxial thin films of cobalt in its three crystalline phases. The terahertz magnetic field generates a torque on the magnetization which causes it to precess for about 1 ps, wi
WTe2 Weyl semimetal hosts the natural broken inversion symmetry and strong spin orbit coupling, making it promising for exotic spin/valley dynamics within a picosecond timescale. Here, we unveil an anisotropic ultrafast spin/valley dynamics in centim
A spin-torque ferromagnetic resonance study is performed in epitaxial $mathrm{Fe / Ir_{15}Mn_{85}}$ bilayers with different Fe thicknesses. We measure a negative spin-Hall angle of a few percent in the antiferromagnetic IrMn in contrast to previously
Interband optical transitions in graphene are subject to pseudospin selection rules. Impulsive excitation with linearly polarized light generates an anisotropic photocarrier occupation in momentum space that evolves at timescales shorter than 100fs.
We report direct experimental evidence of room temperature spin filtering in magnetic tunnel junctions (MTJs) containing CoFe2O4 tunnel barriers via tunneling magnetoresistance (TMR) measurements. Pt(111)/CoFe2O4(111)/gamma-Al2O3(111)/Co(0001) fully