ﻻ يوجد ملخص باللغة العربية
In the field of light-matter interactions, it is often assumed that a classical light field that interacts with a quantum particle remains almost unchanged and thus contains nearly no information about the manipulated particles. To investigate the validity of this assumption, we develop and theoretically analyze a simple Gedankenexperiment which involves the interaction of a coherent state with a quantum particle in an optical cavity. We quantify the resulting alteration of the light field by measuring the fidelity of its initial and equilibrium states. Using Bayesian inference, we demonstrate the information transfer through photon measurements. In addition, we employ the concepts of quantum entropy and mutual information to quantify the entropy transfer from the particle to the light field. In the weak coupling limit, we validate the usually assumed negligible alteration of the light field and entropy transfer. In the strong coupling limit, however, we observe that the information of the initial particle state can be fully encoded in the light field, even for large photon numbers. Nevertheless, we show that spontaneous emission is a sufficient mechanism for removing the entropy initially stored in the particle. Our analysis provides a deeper understanding of the entropy exchange between quantum matter and classical light.
When polarized light is absorbed by an atom, the excited atomic system carries information about the initial polarization of light. For the light that carries an orbital angular momentum, or the twisted light, the polarization states are described by
We analyze the light scattered by a single InAs quantum dot interacting with a resonant continuous-wave laser. High resolution spectra reveal clear distinctions between coherent and incoherent scattering, with the laser intensity spanning over four o
Resonant excitation of atoms and ions in macroscopic cavities has lead to exceptional control over quanta of light. Translating these advantages into the solid state with emitters in microcavities promises revolutionary quantum technologies in inform
The prototype quantum random number (random bit) generators (QRNG) consists of one photon at a time falling on a $50:50$ beam splitter followed by random detection in one or the other other output beams due to the irreducible probabilistic nature of
We consider the problem of quantum-classical correspondence in integrable field theories. We propose a method to construct a field theoretical coherent state, in which the expectation value of the quantum field operator exactly coincides with the cla