ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent versus Incoherent Light Scattering from a Quantum Dot

126   0   0.0 ( 0 )
 نشر من قبل Andreas Muller
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the light scattered by a single InAs quantum dot interacting with a resonant continuous-wave laser. High resolution spectra reveal clear distinctions between coherent and incoherent scattering, with the laser intensity spanning over four orders of magnitude. We find that the fraction of coherently scattered photons can approach unity under sufficiently weak or detuned excitation, ruling out pure dephasing as a relevant decoherence mechanism. We show how spectral diffusion shapes spectra, correlation functions, and phase-coherence, concealing the ideal radiatively-broadened two-level system described by Mollow.



قيم البحث

اقرأ أيضاً

We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The elect rostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a five-fold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.
We report on resonance fluorescence from a single quantum dot emitting at telecom wavelengths. We perform high-resolution spectroscopy and observe the Mollow triplet in the Rabi regime--a hallmark of resonance fluorescence. The measured resonance-flu orescence spectra allow us to rule out pure dephasing as a significant decoherence mechanism in these quantum dots. Combined with numerical simulations, the experimental results provide robust characterisation of charge noise in the environment of the quantum dot. Resonant control of the quantum dot opens up new possibilities for on-demand generation of indistinguishable single photons at telecom wavelengths as well as quantum optics experiments and direct manipulation of solid-state qubits in telecom-wavelength quantum dots.
We analyze the impact of both an incoherent and a coherent continuous excitation on our proposal to generate a two-photon state from a quantum dot in a microcavity [New J. Phys. 13, 113014 (2011)]. A comparison between exact numerical results and ana lytical formulas provides the conditions to efficiently generate indistinguishable and simultaneous pairs of photons under both types of excitation.
Resonant excitation of atoms and ions in macroscopic cavities has lead to exceptional control over quanta of light. Translating these advantages into the solid state with emitters in microcavities promises revolutionary quantum technologies in inform ation processing and metrology. Key is resonant optical reading and writing from the emitter-cavity system. However, it has been widely expected that the reflection of a resonant laser from a micro-fabricated wavelength-sized cavity would dominate any quantum signal. Here we demonstrate coherent photon scattering from a quantum dot in a micro-pillar. The cavity is shown to enhance the fraction of light which is resonantly scattered towards unity, generating anti-bunched indistinguishable photons a factor of 16 beyond the time-bandwidth limit, even when the transition is near saturation. Finally, deterministic excitation is used to create 2-photon N00N states with which we make super-resolving phase measurements in a photonic circuit.
156 - A. Greilich 2008
We show that the spins of all electrons, each confined in a quantum dot of an (In,Ga)As/GaAs dot ensemble, can be driven into a single mode of precession about a magnetic field. This regime is achieved by allowing only a single mode within the electr on spin precession spectrum of the ensemble to be synchronized with a train of periodic optical excitation pulses. Under this condition a nuclei induced frequency focusing leads to a shift of all spin precession frequencies into the synchronized mode. The macroscopic magnetic moment of the electron spins that is created in this regime precesses without dephasing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا