ﻻ يوجد ملخص باللغة العربية
We consider the problem of quantum-classical correspondence in integrable field theories. We propose a method to construct a field theoretical coherent state, in which the expectation value of the quantum field operator exactly coincides with the classical soliton. We also discuss the time evolution of this quantum state and the instability due to the nonlinearity.
A new formalism is introduced to treat problems in quantum field theory, using coherent functional expansions rather than path integrals. The basic results and identities of this approach are developed. In the case of a Bose gas with point-contact in
We propose two experimental schemes for producing coherent-state superpositions which approximate different nonclassical states conditionally in traveling optical fields. Although these setups are constructed of a small number of linear optical eleme
We introduce the concept of multisymplectic formalism, familiar in covariant field theory, for the study of integrable defects in 1+1 classical field theory. The main idea is the coexistence of two Poisson brackets, one for each spacetime coordinate.
We study a quantum quench of the mass and the interaction in the Sinh-Gordon model starting from a large initial mass and zero initial coupling. Our focus is on the determination of the expansion of the initial state in terms of post-quench excitatio
The transfer of quantum states has played an important role in quantum information processing. In fact, transfer of quantum states from point $A$ to $B$ with unit fidelity is very important for us and we focus on this case. In recent years, in repres