ﻻ يوجد ملخص باللغة العربية
Bures distance holds a special place among various distance measures due to its several distinguished features and finds applications in diverse problems in quantum information theory. It is related to fidelity and, among other things, it serves as a bona fide measure for quantifying the separability of quantum states. In this work, we calculate exact analytical results for the mean root fidelity and mean square Bures distance between a fixed density matrix and a random density matrix, and also between two random density matrices. In the course of derivation, we also obtain spectral density for product of above pairs of density matrices. We corroborate our analytical results using Monte Carlo simulations. Moreover, we compare these results with the mean square Bures distance between reduced density matrices generated using coupled kicked tops and find very good agreement.
Recent years have witnessed a controversy over Heisenbergs famous error-disturbance relation. Here we resolve the conflict by way of an analysis of the possible conceptualizations of measurement error and disturbance in quantum mechanics. We discuss
One of the major problems in quantum physics has been to generalize the classical root-mean-square error to quantum measurements to obtain an error measure satisfying both soundness (to vanish for any accurate measurements) and completeness (to vanis
A geometric interpretation for the A-fidelity between two states of a qubit system is presented, which leads to an upper bound of the Bures fidelity. The metrics defined based on the A-fidelity are studied by numerical method. An alternative generali
In this paper, the existence conditions of nonuniform mean-square exponential dichotomy (NMS-ED) for a linear stochastic differential equation (SDE) are established. The difference of the conditions for the existence of a nonuniform dichotomy between
We study various methods to generate ensembles of random density matrices of a fixed size N, obtained by partial trace of pure states on composite systems. Structured ensembles of random pure states, invariant with respect to local unitary transforma