ﻻ يوجد ملخص باللغة العربية
In this paper, the existence conditions of nonuniform mean-square exponential dichotomy (NMS-ED) for a linear stochastic differential equation (SDE) are established. The difference of the conditions for the existence of a nonuniform dichotomy between an SDE and an ordinary differential equation (ODE) is that the first one needs an additional assumption, nonuniform Lyapunov matrix, to guarantee that the linear SDE can be transformed into a decoupled one, while the second does not. Therefore, the first main novelty of our work is that we establish some preliminary results to tackle the stochasticity. This paper is also concerned with the mean-square exponential stability of nonlinear perturbation of a linear SDE under the condition of nonuniform mean-square exponential contraction (NMS-EC). For this purpose, the concept of second-moment regularity coefficient is introduced. This concept is essential in determining the stability of the perturbed equation, and hence we deduce the lower and upper bounds of this coefficient. Our results imply that the lower and upper bounds of the second-moment regularity coefficient can be expressed solely by the drift term of the linear SDE.
For linear stochastic differential equations (SDEs) with bounded coefficients, we establish the robustness of nonuniform mean-square exponential dichotomy (NMS-ED) on $[t_{0},+oo)$, $(-oo,t_{0}]$ and the whole $R$ separately, in the sense that such a
We investigate how the following properties are related to each other: i)-A manifold is transversally exponentially stable; ii)-The transverse linearization along any solution in the manifold is exponentially stable; iii)-There exists a field of posi
The concept of square-mean almost automorphy for stochastic processes is introduced. The existence and uniqueness of square-mean almost automorphic solutions to some linear and non-linear stochastic differential equations are established provided the
Detailed theoretical study of the mean square radius of extensive air shower electrons has been made in connection with further development of scaling formalism for electron lateral distribution function. A very simple approximation formula, which al
In this paper we start the inquiry into proving uniform exponential growth in the context of groups acting on CAT(0) cube complexes. We address free group actions on CAT(0) square complexes and prove a more general statement. This says that if $F$ is