ﻻ يوجد ملخص باللغة العربية
Recent years have witnessed a controversy over Heisenbergs famous error-disturbance relation. Here we resolve the conflict by way of an analysis of the possible conceptualizations of measurement error and disturbance in quantum mechanics. We discuss two approaches to adapting the classic notion of root-mean-square error to quantum measurements. One is based on the concept of noise operator; its natural operational content is that of a mean deviation of the values of two observables measured jointly, and thus its applicability is limited to cases where such joint measurements are available. The second error measure quantifies the differences between two probability distributions obtained in separate runs of measurements and is of unrestricted applicability. We show that there are no nontrivial unconditional joint-measurement bounds for {em state-dependent} errors in the conceptual framework discussed here, while Heisenberg-type measurement uncertainty relations for {em state-independent} errors have been proven.
Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here w
One of the major problems in quantum physics has been to generalize the classical root-mean-square error to quantum measurements to obtain an error measure satisfying both soundness (to vanish for any accurate measurements) and completeness (to vanis
Bures distance holds a special place among various distance measures due to its several distinguished features and finds applications in diverse problems in quantum information theory. It is related to fidelity and, among other things, it serves as a
We introduce a new unconditionally solvable level-crossing two-state model given by a constant-amplitude optical field configuration for which the detuning is an inverse-square-root function of time. This is a member of one of the five families of bi
The notions of error and disturbance appearing in quantum uncertainty relations are often quantified by the discrepancy of a physical quantity from its ideal value. However, these real and ideal values are not the outcomes of simultaneous measurement