ﻻ يوجد ملخص باللغة العربية
Natural numbers can be divided in two non-overlapping infinite sets, primes and composites, with composites factorizing into primes. Despite their apparent simplicity, the elucidation of the architecture of natural numbers with primes as building blocks remains elusive. Here, we propose a new approach to decoding the architecture of natural numbers based on complex networks and stochastic processes theory. We introduce a parameter-free non-Markovian dynamical model that naturally generates random primes and their relation with composite numbers with remarkable accuracy. Our model satisfies the prime number theorem as an emerging property and a refined version of Cramers conjecture about the statistics of gaps between consecutive primes that seems closer to reality than the original Cramers version. Regarding composites, the model helps us to derive the prime factors counting function, giving the probability of distinct prime factors for any integer. Probabilistic models like ours can help to get deeper insights about primes and the complex architecture of natural numbers.
We present the pattern underlying some of the properties of natural numbers, using the framework of complex networks. The network used is a divisibility network in which each node has a fixed identity as one of the natural numbers and the connections
To study arithmetic structures of natural numbers, we introduce a notion of entropy of arithmetic functions, called anqie entropy. This entropy possesses some crucial properties common to both Shannons and Kolmogorovs entropies. We show that all arit
Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological f
In this paper some generalizations of the sum of powers of natural numbers is considered. In particular, the class of sums whose generating function is the power of the generating function for the classical sums of powers is studying. The so-called b
We prove an isomorphism between the finite domain from 1 up to the product of the first n primes and the new defined set of prime modular numbers. This definition provides some insights about relative prime numbers. We provide an inverse function fro