ترغب بنشر مسار تعليمي؟ اضغط هنا

Graph Vulnerability and Robustness: A Survey

96   0   0.0 ( 0 )
 نشر من قبل Scott Freitas
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these areas, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.



قيم البحث

اقرأ أيضاً

Network robustness plays a crucial role in our understanding of complex interconnected systems such as transportation, communication, and computer networks. While significant research has been conducted in the area of network robustness, no comprehen sive open-source toolbox currently exists to assist researchers and practitioners in this important topic. This lack of available tools hinders reproducibility and examination of existing work, development of new research, and dissemination of new ideas. We contribute TIGER, an open-sourced Python toolbox to address these challenges. TIGER contains 22 graph robustness measures with both original and fast approxima
Locally-biased graph algorithms are algorithms that attempt to find local or small-scale structure in a large data graph. In some cases, this can be accomplished by adding some sort of locality constraint and calling a traditional graph algorithm; bu t more interesting are locally-biased graph algorithms that compute answers by running a procedure that does not even look at most of the input graph. This corresponds more closely to what practitioners from various data science domains do, but it does not correspond well with the way that algorithmic and statistical theory is typically formulated. Recent work from several research communities has focused on developing locally-biased graph algorithms that come with strong complementary algorithmic and statistical theory and that are useful in practice in downstream data science applications. We provide a review and overview of this work, highlighting commonalities between seemingly-different approaches, and highlighting promising directions for future work.
449 - Xiao Wang , Deyu Bo , Chuan Shi 2020
Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn representations in a lower-dimension space while preserving the heterogeneous str uctures and semantics for downstream tasks (e.g., node/graph classification, node clustering, link prediction), has drawn considerable attentions in recent years. In this survey, we perform a comprehensive review of the recent development on HG embedding methods and techniques. We first introduce the basic concepts of HG and discuss the unique challenges brought by the heterogeneity for HG embedding in comparison with homogeneous graph representation learning; and then we systemically survey and categorize the state-of-the-art HG embedding methods based on the information they used in the learning process to address the challenges posed by the HG heterogeneity. In particular, for each representative HG embedding method, we provide detailed introduction and further analyze its pros and cons; meanwhile, we also explore the transformativeness and applicability of different types of HG embedding methods in the real-world industrial environments for the first time. In addition, we further present several widely deployed systems that have demonstrated the success of HG embedding techniques in resolving real-world application problems with broader impacts. To facilitate future research and applications in this area, we also summarize the open-source code, existing graph learning platforms and benchmark datasets. Finally, we explore the additional issues and challenges of HG embedding and forecast the future research directions in this field.
69 - B. Zhou , Y. Q. Lv , Y. C. Mao 2021
The k-shell decomposition plays an important role in unveiling the structural properties of a network, i.e., it is widely adopted to find the densest part of a network across a broad range of scientific fields, including Internet, biological networks , social networks, etc. However, there arises concern about the robustness of the k-shell structure when networks suffer from adversarial attacks. Here, we introduce and formalize the problem of the k-shell attack and develop an efficient strategy to attack the k-shell structure by rewiring a small number of links. To the best of our knowledge, it is the first time to study the robustness of graph k-shell structure under adversarial attacks. In particular, we propose a Simulated Annealing (SA) based k-shell attack method and testify it on four real-world social networks. The extensive experiments validate that the k-shell structure of a network is robust under random perturbation, but it is quite vulnerable under adversarial attack, e.g., in Dolphin and Throne networks, more than 40% nodes change their k-shell values when only 10% links are changed based on our SA-based k-shell attack. Such results suggest that a single structural feature could also be significantly disturbed when only a small fraction of links are changed purposefully in a network. Therefore, it could be an interesting topic to improve the robustness of various network properties against adversarial attack in the future.
Recently, many systems for graph analysis have been developed to address the growing needs of both industry and academia to study complex graphs. Insight into the practical uses of graph analysis will allow future developments of such systems to opti mize for real-world usage, instead of targeting single use cases or hypothetical workloads. This insight may be derived from surveys on the applications of graph analysis. However, existing surveys are limited in the variety of application domains, datasets, and/or graph analysis techniques they study. In this work we present and apply a systematic method for identifying practical use cases of graph analysis. We identify commonly used graph features and analysis methods and use our findings to construct a taxonomy of graph analysis applications. We conclude that practical use cases of graph analysis cover a diverse set of graph features and analysis methods. Furthermore, most applications combine multiple features and methods. Our findings motivate further development of graph analysis systems to support a broader set of applications and to facilitate the combination of multiple analysis methods in an (interactive) workflow.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا