ﻻ يوجد ملخص باللغة العربية
Locally-biased graph algorithms are algorithms that attempt to find local or small-scale structure in a large data graph. In some cases, this can be accomplished by adding some sort of locality constraint and calling a traditional graph algorithm; but more interesting are locally-biased graph algorithms that compute answers by running a procedure that does not even look at most of the input graph. This corresponds more closely to what practitioners from various data science domains do, but it does not correspond well with the way that algorithmic and statistical theory is typically formulated. Recent work from several research communities has focused on developing locally-biased graph algorithms that come with strong complementary algorithmic and statistical theory and that are useful in practice in downstream data science applications. We provide a review and overview of this work, highlighting commonalities between seemingly-different approaches, and highlighting promising directions for future work.
The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they beco
Centrality rankings such as degree, closeness, betweenness, Katz, PageRank, etc. are commonly used to identify critical nodes in a graph. These methods are based on two assumptions that restrict their wider applicability. First, they assume the exact
The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these are
The $k$-truss, introduced by Cohen (2005), is a graph where every edge is incident to at least $k$ triangles. This is a relaxation of the clique. It has proved to be a useful tool in identifying cohesive subnetworks in a variety of real-world graphs.
Do algorithms for drawing graphs pass the Turing Test? That is, are their outputs indistinguishable from graphs drawn by humans? We address this question through a human-centred experiment, focusing on `small graphs, of a size for which it would be r