ترغب بنشر مسار تعليمي؟ اضغط هنا

An optimization approach to locally-biased graph algorithms

106   0   0.0 ( 0 )
 نشر من قبل Kimon Fountoulakis
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Locally-biased graph algorithms are algorithms that attempt to find local or small-scale structure in a large data graph. In some cases, this can be accomplished by adding some sort of locality constraint and calling a traditional graph algorithm; but more interesting are locally-biased graph algorithms that compute answers by running a procedure that does not even look at most of the input graph. This corresponds more closely to what practitioners from various data science domains do, but it does not correspond well with the way that algorithmic and statistical theory is typically formulated. Recent work from several research communities has focused on developing locally-biased graph algorithms that come with strong complementary algorithmic and statistical theory and that are useful in practice in downstream data science applications. We provide a review and overview of this work, highlighting commonalities between seemingly-different approaches, and highlighting promising directions for future work.



قيم البحث

اقرأ أيضاً

The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they beco me accessible in order to maximize a global objective function. More generally, adaptive seeding is a stochastic optimization framework where the choices in the first stage affect the realizations in the second stage, over which we aim to optimize. Our main result is a $(1-1/e)^2$-approximation for the adaptive seeding problem for any monotone submodular function. While adaptive policies are often approximated via non-adaptive policies, our algorithm is based on a novel method we call emph{locally-adaptive} policies. These policies combine a non-adaptive global structure, with local adaptive optimizations. This method enables the $(1-1/e)^2$-approximation for general monotone submodular functions and circumvents some of the impossibilities associated with non-adaptive policies. We also introduce a fundamental problem in submodular optimization that may be of independent interest: given a ground set of elements where every element appears with some small probability, find a set of expected size at most $k$ that has the highest expected value over the realization of the elements. We show a surprising result: there are classes of monotone submodular functions (including coverage) that can be approximated almost optimally as the probability vanishes. For general monotone submodular functions we show via a reduction from textsc{Planted-Clique} that approximations for this problem are not likely to be obtainable. This optimization problem is an important tool for adaptive seeding via non-adaptive policies, and its hardness motivates the introduction of emph{locally-adaptive} policies we use in the main result.
Centrality rankings such as degree, closeness, betweenness, Katz, PageRank, etc. are commonly used to identify critical nodes in a graph. These methods are based on two assumptions that restrict their wider applicability. First, they assume the exact topology of the network is available. Secondly, they do not take into account the activity over the network and only rely on its topology. However, in many applications, the network is autonomous, vast, and distributed, and it is hard to collect the exact topology. At the same time, the underlying pairwise activity between node pairs is not uniform and node criticality strongly depends on the activity on the underlying network. In this paper, we propose active betweenness cardinality, as a new measure, where the node criticalities are based on not the static structure, but the activity of the network. We show how this metric can be computed efficiently by using only local information for a given node and how we can find the most critical nodes starting from only a few nodes. We also show how this metric can be used to monitor a network and identify failed nodes.We present experimental results to show effectiveness by demonstrating how the failed nodes can be identified by measuring active betweenness cardinality of a few nodes in the system.
The study of network robustness is a critical tool in the characterization and sense making of complex interconnected systems such as infrastructure, communication and social networks. While significant research has been conducted in all of these are as, gaps in the surveying literature still exist. Answers to key questions are currently scattered across multiple scientific fields and numerous papers. In this survey, we distill key findings across numerous domains and provide researchers crucial access to important information by--(1) summarizing and comparing recent and classical graph robustness measures; (2) exploring which robustness measures are most applicable to different categories of networks (e.g., social, infrastructure; (3) reviewing common network attack strategies, and summarizing which attacks are most effective across different network topologies; and (4) extensive discussion on selecting defense techniques to mitigate attacks across a variety of networks. This survey guides researchers and practitioners in navigating the expansive field of network robustness, while summarizing answers to key questions. We conclude by highlighting current research directions and open problems.
The $k$-truss, introduced by Cohen (2005), is a graph where every edge is incident to at least $k$ triangles. This is a relaxation of the clique. It has proved to be a useful tool in identifying cohesive subnetworks in a variety of real-world graphs. Despite its simplicity and its utility, the combinatorial and algorithmic aspects of trusses have not been thoroughly explored. We provide nearly-tight bounds on the edge counts of $k$-trusses. We also give two improved algorithms for finding trusses in large-scale graphs. First, we present a simplified and faster algorithm, based on approach discussed in Wang & Cheng (2012). Second, we present a theoretical algorithm based on fast matrix multiplication; this converts a triangle-generation algorithm of Bjorklund et al. (2014) into a dynamic data structure.
Do algorithms for drawing graphs pass the Turing Test? That is, are their outputs indistinguishable from graphs drawn by humans? We address this question through a human-centred experiment, focusing on `small graphs, of a size for which it would be r easonable for someone to choose to draw the graph manually. Overall, we find that hand-drawn layouts can be distinguished from those generated by graph drawing algorithms, although this is not always the case for graphs drawn by force-directed or multi-dimensional scaling algorithms, making these good candidates for Turing Test success. We show that, in general, hand-drawn graphs are judged to be of higher quality than automatically generated ones, although this result varies with graph size and algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا