ﻻ يوجد ملخص باللغة العربية
An hidden variable (hv) theory is a theory that allows globally dispersion free ensembles. We demonstrate that the Phase Space formulation of Quantum Mechanics (QM) is an hv theory with the position q, and momentum p as the hv. Comparing the Phase space and Hilbert space formulations of QM we identify the assumption that led von Neumann to the Hilbert space formulation of QM which, in turn, precludes global dispersion free ensembles within the theory. The assumption, dubbed I, is: If a physical quantity $mathbf{A}$ has an operator $hat{A}$ then $f(mathbf{A})$ has the operator $f(hat{A})$. This assumption does not hold within the Phase Space formulation of QM. The hv interpretation of the Phase space formulation provides novel insight into the interrelation between dispersion and non commutativity of position and momentum (operators) within the Hilbert space formulation of QM and mitigates the criticism against von Neumanns no hidden variable theorem by, virtually, the consensus.
The foundations of quantum mechanics have been plagued by controversy throughout the 85 year history of the field. It is argued that lack of clarity in the formulation of basic philosophical questions leads to unnecessary obscurity and controversy an
Newtonian physics is describes macro-objects sufficiently well, however it does not describe microobjects. A model of Extended Mechanics for Quantum Theory is based on an axiomatic generalization of Newtonian classical laws to arbitrary reference fra
This dissertation serves as a general introduction to Wigner functions, phase space, and quantum metrology but also strives to be useful as a how-to guide for those who wish to delve into the realm of using continuous variables, to describe quantum s
A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about object
The data of four recent experiments --- conducted in Delft, Vienna, Boulder, and Munich with the aim of refuting nonquantum hidden-variables alternatives to the quantum-mechanical description --- are evaluated from a Bayesian perspective of what cons