ﻻ يوجد ملخص باللغة العربية
Newtonian physics is describes macro-objects sufficiently well, however it does not describe microobjects. A model of Extended Mechanics for Quantum Theory is based on an axiomatic generalization of Newtonian classical laws to arbitrary reference frames postulating the description of body dynamics by differential equations with higher derivatives of coordinates with respect to time but not only of second order ones and follows from Mach principle. In that case the Lagrangian $L(t,q,dot{q},ddot{q},...,dot {q}^{(n)},...)$ depends on higher derivatives of coordinates with respect to time. The kinematic state of a body is considered to be defined if n-th derivative of the body coordinate with respect to time is a constant (i.e. finite). First, kinematic state of a free body is postulated to invariable in an arbitrary reference frame. Second, if the kinematic invariant of the reference frame is the n-th order derivative of coordinate with respect to time, then the body dynamics is describes by a 2n-th order differential equation. For example, in a uniformly accelerated reference frame all free particles have the same acceleration equal to the reference frame invariant, i.e. reference frame acceleration. These bodies are described by third-order differential equation in a uniformly accelerated reference frame.
Which non-local hidden variables could complement the description of physical reality? The present model of extended Newtonian dynamics (MEND) is generalize but not alternative to Newtonian Dynamics because its extended Newtonian Dynamics to arbitrar
An hidden variable (hv) theory is a theory that allows globally dispersion free ensembles. We demonstrate that the Phase Space formulation of Quantum Mechanics (QM) is an hv theory with the position q, and momentum p as the hv. Comparing the Phase
The data of four recent experiments --- conducted in Delft, Vienna, Boulder, and Munich with the aim of refuting nonquantum hidden-variables alternatives to the quantum-mechanical description --- are evaluated from a Bayesian perspective of what cons
This Masters thesis has two central subjects: the simulation of correlations generated by local measurements on entangled quantum states by local hidden-variables models and the revelation of hidden nonlocality. We present and detail the Werners loca
We present a theoretical model which allows to keep track of all photons in an interferometer. The model is implemented in a numerical scheme, and we simulate photon interference measurements on one, two, four, and eight slits. Measurements are simul