ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum mechanics as a deterministic theory of a continuum of worlds

255   0   0.0 ( 0 )
 نشر من قبل Kim Joris Bostr\\\"om
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kim Joris Bostrom




اسأل ChatGPT حول البحث

A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about objects in a multiplicity of worlds. In this logical framework, the continuum of worlds is treated in analogy to the continuum of time points, both time and world are considered as mutually independent modes of existence. The theory combines elements of Bohmian mechanics and of Everetts many-worlds interpretation, it has a clear ontology and a set of precisely defined postulates from where the predictions of standard quantum mechanics can be derived. Probability as given by the Born rule emerges as a consequence of insufficient knowledge of observers about which world it is that they live in. The theory describes a continuum of worlds rather than a single world or a discrete set of worlds, so it is similar in spirit to many-worlds interpretations based on Everetts approach, without being actually reducible to these. In particular, there is no splitting of worlds, which is a typical feature of Everett-type theories. Altogether, the theory explains (1) the subjective occurrence of probabilities, (2) their quantitative value as given by the Born rule, and (3) the apparently random collapse of the wavefunction caused by the measurement, while still being an objectively deterministic theory.



قيم البحث

اقرأ أيضاً

204 - P. C. Hohenberg 2011
The foundations of quantum mechanics have been plagued by controversy throughout the 85 year history of the field. It is argued that lack of clarity in the formulation of basic philosophical questions leads to unnecessary obscurity and controversy an d an attempt is made to identify the main forks in the road that separate the most important interpretations of quantum theory. The consistent histories formulation, also known as consistent quantum theory, is described as one particular way (favored by the author) to answer the essential questions of interpretation. The theory is shown to be a realistic formulation of quantum mechanics, in contrast to the orthodox or Copenhagen formulation which will be referred to as an operationalist theory.
Since the very early days of quantum theory there have been numerous attempts to interpret quantum mechanics as a statistical theory. This is equivalent to describing quantum states and ensembles together with their dynamics entirely in terms of phas e-space distributions. Finite dimensional systems have historically been an issue. In recent works [Phys. Rev. Lett. 117, 180401 and Phys. Rev. A 96, 022117] we presented a framework for representing any quantum state as a complete continuous Wigner function. Here we extend this work to its partner function -- the Weyl function. In doing so we complete the phase-space formulation of quantum mechanics -- extending work by Wigner, Weyl, Moyal, and others to any quantum system. This work is structured in three parts. Firstly we provide a brief modernized discussion of the general framework of phase-space quantum mechanics. We extend previous work and show how this leads to a framework that can describe any system in phase space -- putting it for the first time on a truly equal footing to Schrodingers and Heisenbergs formulation of quantum mechanics. Importantly, we do this in a way that respects the unifying principles of parity and displacement in a natural broadening of previously developed phase space concepts and methods. Secondly we consider how this framework is realized for different quantum systems; in particular we consider the proper construction of Weyl functions for some example finite dimensional systems. Finally we relate the Wigner and Weyl distributions to statistical properties of any quantum system or set of systems.
75 - Frank J. Tipler 2021
Many-Worlds quantum mechanics differs from standard quantum mechanics in that in Many-Worlds, the wave function is a relative density of universes in the multiverse amplitude rather than a probability amplitude. This means that in Many-Worlds, the Bo rn frequencies are approached rather than given a priori. Thus in Many-Worlds the rate of approach to the final frequencies can be calculated and compared with observation. I use Many-Worlds to derive the rate of approach in the double slit experiment, and show that it agrees with observation. Standard quantum theory has never been used to derive an approach formula because it cannot be so used, as has been tacitly acknowledged for 70 years.
An hidden variable (hv) theory is a theory that allows globally dispersion free ensembles. We demonstrate that the Phase Space formulation of Quantum Mechanics (QM) is an hv theory with the position q, and momentum p as the hv. Comparing the Phase space and Hilbert space formulations of QM we identify the assumption that led von Neumann to the Hilbert space formulation of QM which, in turn, precludes global dispersion free ensembles within the theory. The assumption, dubbed I, is: If a physical quantity $mathbf{A}$ has an operator $hat{A}$ then $f(mathbf{A})$ has the operator $f(hat{A})$. This assumption does not hold within the Phase Space formulation of QM. The hv interpretation of the Phase space formulation provides novel insight into the interrelation between dispersion and non commutativity of position and momentum (operators) within the Hilbert space formulation of QM and mitigates the criticism against von Neumanns no hidden variable theorem by, virtually, the consensus.
62 - Eyuri Wakakuwa 2021
We propose the gentle measurement principle (GMP) as one of the principles at the foundation of quantum mechanics. It asserts that if a set of states can be distinguished with high probability, they can be distinguished by a measurement that leaves t he states almost invariant, including correlation with a reference system. While GMP is satisfied in both classical and quantum theories, we show, within the framework of general probabilistic theories, that it imposes strong restrictions on the law of physics. First, the measurement uncertainty of a pair of observables cannot be significantly larger than the preparation uncertainty. Consequently, the strength of the CHSH nonlocality cannot be maximal. The parameter in the stretched quantum theory, a family of general probabilistic theories that includes the quantum theory, is also limited. Second, the conditional entropy defined in terms of a data compression theorem satisfies the chain inequality. Not only does it imply information causality and Tsirelsons bound, but it singles out the quantum theory from the stretched one. All these results show that GMP would be one of the principles at the heart of quantum mechanics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا