ﻻ يوجد ملخص باللغة العربية
Space-filling designs are important in computer experiments, which are critical for building a cheap surrogate model that adequately approximates an expensive computer code. Many design construction techniques in the existing literature are only applicable for rectangular bounded space, but in real world applications, the input space can often be non-rectangular because of constraints on the input variables. One solution to generate designs in a constrained space is to first generate uniformly distributed samples in the feasible region, and then use them as the candidate set to construct the designs. Sequentially Constrained Monte Carlo (SCMC) is the state-of-the-art technique for candidate generation, but it still requires large number of constraint evaluations, which is problematic especially when the constraints are expensive to evaluate. Thus, to reduce constraint evaluations and improve efficiency, we propose the Constrained Minimum Energy Design (CoMinED) that utilizes recent advances in deterministic sampling methods. Extensive simulation results on 15 benchmark problems with dimensions ranging from 2 to 13 are provided for demonstrating the improved performance of CoMinED over the existing methods.
This study extends power formulas proposed by Schochet (2008) assuming that the cluster-level score variable follows quadratic functional form. Results reveal that we need not be concerned with treatment by linear term interaction, and polynomial deg
We study the constrained minimum energy problem with an external field relative to the $alpha$-Riesz kernel $|x-y|^{alpha-n}$ of order $alphain(0,n)$ for a generalized condenser $mathbf A=(A_i)_{iin I}$ in $mathbb R^n$, $ngeqslant 3$, whose oppositel
Tie-breaker experimental designs are hybrids of Randomized Control Trials (RCTs) and Regression Discontinuity Designs (RDDs) in which subjects with moderate scores are placed in an RCT while subjects with extreme scores are deterministically assigned
We study minimum energy problems relative to the $alpha$-Riesz kernel $|x-y|^{alpha-n}$, $alphain(0,2]$, over signed Radon measures $mu$ on $mathbb R^n$, $ngeqslant3$, associated with a generalized condenser $(A_1,A_2)$, where $A_1$ is a relatively c
Blocking is often used to reduce known variability in designed experiments by collecting together homogeneous experimental units. A common modelling assumption for such experiments is that responses from units within a block are dependent. Accounting