ﻻ يوجد ملخص باللغة العربية
Tie-breaker experimental designs are hybrids of Randomized Control Trials (RCTs) and Regression Discontinuity Designs (RDDs) in which subjects with moderate scores are placed in an RCT while subjects with extreme scores are deterministically assigned to the treatment or control group. The design maintains the benefits of randomization for causal estimation while avoiding the possibility of excluding the most deserving recipients from the treatment group. The causal effect estimator for a tie-breaker design can be estimated by fitting local linear regressions for both the treatment and control group, as is typically done for RDDs. We study the statistical efficiency of such local linear regression-based causal estimators as a function of $Delta$, the radius of the interval in which treatment randomization occurs. In particular, we determine the efficiency of the estimator as a function of $Delta$ for a fixed, arbitrary bandwidth under the assumption of a uniform assignment variable. To generalize beyond uniform assignment variables and asymptotic regimes, we also demonstrate on the Angrist and Lavy (1999) classroom size dataset that prior to conducting an experiment, an experimental designer can estimate the efficiency for various experimental radii choices by using Monte Carlo as long as they have access to the distribution of the assignment variable. For both uniform and triangular kernels, we show that increasing the radius of randomized experiment interval will increase the efficiency until the radius is the size of the local-linear regression bandwidth, after which no additional efficiency benefits are conferred.
Quantile regression is an increasingly important empirical tool in economics and other sciences for analyzing the impact of a set of regressors on the conditional distribution of an outcome. Extremal quantile regression, or quantile regression applie
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time homogeneity conditions that are like time is randomly assi
This paper proposes a method to address the longstanding problem of lack of monotonicity in estimation of conditional and structural quantile functions, also known as the quantile crossing problem. The method consists in sorting or monotone rearrangi
Suppose that a target function is monotonic, namely, weakly increasing, and an original estimate of the target function is available, which is not weakly increasing. Many common estimation methods used in statistics produce such estimates. We show th
This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest -- means, variances, and other moments of the random coefficients --