ﻻ يوجد ملخص باللغة العربية
We study the constrained minimum energy problem with an external field relative to the $alpha$-Riesz kernel $|x-y|^{alpha-n}$ of order $alphain(0,n)$ for a generalized condenser $mathbf A=(A_i)_{iin I}$ in $mathbb R^n$, $ngeqslant 3$, whose oppositely charged plates intersect each other over a set of zero capacity. Conditions sufficient for the existence of minimizers are found, and their uniqueness and vague compactness are studied. Conditions obtained are shown to be sharp. We also analyze continuity of the minimizers in the vague and strong topologies when the condenser and the constraint both vary, describe the weighted equilibrium vector potentials, and single out their characteristic properties. Our arguments are based particularly on the simultaneous use of the vague topology and a suitable semimetric structure on a set of vector measures associated with $mathbf A$, and the establishment of completeness theorems for proper semimetric spaces. The results remain valid for the logarithmic kernel on $mathbb R^2$ and $mathbf A$ with compact $A_i$, $iin I$. The study is illustrated by several examples.
Minimum Riesz energy problems in the presence of an external field are analyzed for a condenser with touching plates. We obtain sufficient and/or necessary conditions for the solvability of these problems in both the unconstrained and the constrained
We study minimum energy problems relative to the $alpha$-Riesz kernel $|x-y|^{alpha-n}$, $alphain(0,2]$, over signed Radon measures $mu$ on $mathbb R^n$, $ngeqslant3$, associated with a generalized condenser $(A_1,A_2)$, where $A_1$ is a relatively c
Space-filling designs are important in computer experiments, which are critical for building a cheap surrogate model that adequately approximates an expensive computer code. Many design construction techniques in the existing literature are only appl
For a compact $ d $-dimensional rectifiable subset of $ mathbb{R}^{p} $ we study asymptotic properties as $ Ntoinfty $ of $N$-point configurations minimizing the energy arising from a Riesz $ s $-potential $ 1/r^s $ and an external field in the hyper
We investigate separation properties of $N$-point configurations that minimize discrete Riesz $s$-energy on a compact set $Asubset mathbb{R}^p$. When $A$ is a smooth $(p-1)$-dimensional manifold without boundary and $sin [p-2, p-1)$, we prove that th