ترغب بنشر مسار تعليمي؟ اضغط هنا

Chinese Sentences Similarity via Cross-Attention Based Siamese Network

142   0   0.0 ( 0 )
 نشر من قبل Zhen Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring sentence similarity is a key research area nowadays as it allows machines to better understand human languages. In this paper, we proposed a Cross-Attention Siamese Network (CATsNet) to carry out the task of learning the semantic meanings of Chinese sentences and comparing the similarity between two sentences. This novel model is capable of catching non-local features. Additionally, we also tried to apply the long short-term memory (LSTM) network in the model to improve its performance. The experiments were conducted on the LCQMC dataset and the results showed that our model could achieve a higher accuracy than previous work.



قيم البحث

اقرأ أيضاً

Tables are a popular and efficient means of presenting structured information. They are used extensively in various kinds of documents including web pages. Tables display information as a two-dimensional matrix, the semantics of which is conveyed by a mixture of structure (rows, columns), headers, caption, and content. Recent research has started to consider tables as first class objects, not just as an addendum to texts, yielding interesting results for problems like table matching, table completion, or value imputation. All of these problems inherently rely on an accurate measure for the semantic similarity of two tables. We present TabSim, a novel method to compute table similarity scores using deep neural networks. Conceptually, TabSim represents a table as a learned concatenation of embeddings of its caption, its content, and its structure. Given two tables in this representation, a Siamese neural network is trained to compute a score correlating with the tables semantic similarity. To train and evaluate our method, we created a gold standard corpus consisting of 1500 table pairs extracted from biomedical articles and manually scored regarding their degree of similarity, and adopted two other corpora originally developed for a different yet similar task. Our evaluation shows that TabSim outperforms other table similarity measures on average by app. 7% pp F1-score in a binary similarity classification setting and by app. 1.5% pp in a ranking scenario.
Chinese meme-face is a special kind of internet subculture widely spread in Chinese Social Community Networks. It usually consists of a template image modified by some amusing details and a text caption. In this paper, we present MemeFaceGenerator, a Generative Adversarial Network with the attention module and template information as supplementary signals, to automatically generate meme-faces from text inputs. We also develop a web service as system demonstration of meme-face synthesis. MemeFaceGenerator has been shown to be capable of generating high-quality meme-faces from random text inputs.
Entity Linking has two main open areas of research: 1) generate candidate entities without using alias tables and 2) generate more contextual representations for both mentions and entities. Recently, a solution has been proposed for the former as a d ual-encoder entity retrieval system (Gillick et al., 2019) that learns mention and entity representations in the same space, and performs linking by selecting the nearest entity to the mention in this space. In this work, we use this retrieval system solely for generating candidate entities. We then rerank the entities by using a cross-attention encoder over the target mention and each of the candidate entities. Whereas a dual encoder approach forces all information to be contained in the small, fixed set of vector dimensions used to represent mentions and entities, a crossattention model allows for the use of detailed information (read: features) from the entirety of each <mention, context, candidate entity> tuple. We experiment with features used in the reranker including different ways of incorporating document-level context. We achieve state-of-the-art results on TACKBP-2010 dataset, with 92.05% accuracy. Furthermore, we show how the rescoring model generalizes well when trained on the larger CoNLL-2003 dataset and evaluated on TACKBP-2010.
User acceptance of artificial intelligence agents might depend on their ability to explain their reasoning, which requires adding an interpretability layer that fa- cilitates users to understand their behavior. This paper focuses on adding an in- ter pretable layer on top of Semantic Textual Similarity (STS), which measures the degree of semantic equivalence between two sentences. The interpretability layer is formalized as the alignment between pairs of segments across the two sentences, where the relation between the segments is labeled with a relation type and a similarity score. We present a publicly available dataset of sentence pairs annotated following the formalization. We then develop a system trained on this dataset which, given a sentence pair, explains what is similar and different, in the form of graded and typed segment alignments. When evaluated on the dataset, the system performs better than an informed baseline, showing that the dataset and task are well-defined and feasible. Most importantly, two user studies show how the system output can be used to automatically produce explanations in natural language. Users performed better when having access to the explanations, pro- viding preliminary evidence that our dataset and method to automatically produce explanations is useful in real applications.
Recently, word enhancement has become very popular for Chinese Named Entity Recognition (NER), reducing segmentation errors and increasing the semantic and boundary information of Chinese words. However, these methods tend to ignore the information o f the Chinese character structure after integrating the lexical information. Chinese characters have evolved from pictographs since ancient times, and their structure often reflects more information about the characters. This paper presents a novel Multi-metadata Embedding based Cross-Transformer (MECT) to improve the performance of Chinese NER by fusing the structural information of Chinese characters. Specifically, we use multi-metadata embedding in a two-stream Transformer to integrate Chinese character features with the radical-level embedding. With the structural characteristics of Chinese characters, MECT can better capture the semantic information of Chinese characters for NER. The experimental results obtained on several well-known benchmarking datasets demonstrate the merits and superiority of the proposed MECT method.footnote{The source code of the proposed method is publicly available at https://github.com/CoderMusou/MECT4CNER.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا