ترغب بنشر مسار تعليمي؟ اضغط هنا

TabSim: A Siamese Neural Network for Accurate Estimation of Table Similarity

263   0   0.0 ( 0 )
 نشر من قبل Maryam Habibi
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Tables are a popular and efficient means of presenting structured information. They are used extensively in various kinds of documents including web pages. Tables display information as a two-dimensional matrix, the semantics of which is conveyed by a mixture of structure (rows, columns), headers, caption, and content. Recent research has started to consider tables as first class objects, not just as an addendum to texts, yielding interesting results for problems like table matching, table completion, or value imputation. All of these problems inherently rely on an accurate measure for the semantic similarity of two tables. We present TabSim, a novel method to compute table similarity scores using deep neural networks. Conceptually, TabSim represents a table as a learned concatenation of embeddings of its caption, its content, and its structure. Given two tables in this representation, a Siamese neural network is trained to compute a score correlating with the tables semantic similarity. To train and evaluate our method, we created a gold standard corpus consisting of 1500 table pairs extracted from biomedical articles and manually scored regarding their degree of similarity, and adopted two other corpora originally developed for a different yet similar task. Our evaluation shows that TabSim outperforms other table similarity measures on average by app. 7% pp F1-score in a binary similarity classification setting and by app. 1.5% pp in a ranking scenario.



قيم البحث

اقرأ أيضاً

Measuring sentence similarity is a key research area nowadays as it allows machines to better understand human languages. In this paper, we proposed a Cross-Attention Siamese Network (CATsNet) to carry out the task of learning the semantic meanings o f Chinese sentences and comparing the similarity between two sentences. This novel model is capable of catching non-local features. Additionally, we also tried to apply the long short-term memory (LSTM) network in the model to improve its performance. The experiments were conducted on the LCQMC dataset and the results showed that our model could achieve a higher accuracy than previous work.
Linguistic entrainment is a phenomenon where people tend to mimic each other in conversation. The core instrument to quantify entrainment is a linguistic similarity measure between conversational partners. Most of the current similarity measures are based on bag-of-words approaches that rely on linguistic markers, ignoring the overall language structure and dialogue context. To address this issue, we propose to use a neural network model to perform the similarity measure for entrainment. Our model is context-aware, and it further leverages a novel component to learn the shared high-level linguistic features across dialogues. We first investigate the effectiveness of our novel component. Then we use the model to perform similarity measure in a corpus-based entrainment analysis. We observe promising results for both evaluation tasks.
Few-shot intent detection is a challenging task due to the scare annotation problem. In this paper, we propose a Pseudo Siamese Network (PSN) to generate labeled data for few-shot intents and alleviate this problem. PSN consists of two identical subn etworks with the same structure but different weights: an action network and an object network. Each subnetwork is a transformer-based variational autoencoder that tries to model the latent distribution of different components in the sentence. The action network is learned to understand action tokens and the object network focuses on object-related expressions. It provides an interpretable framework for generating an utterance with an action and an object existing in a given intent. Experiments on two real-world datasets show that PSN achieves state-of-the-art performance for the generalized few shot intent detection task.
Neural network (NN) models are increasingly used in scientific simulations, AI, and other high performance computing (HPC) fields to extract knowledge from datasets. Each dataset requires tailored NN model architecture, but designing structures by ha nd is a time-consuming and error-prone process. Neural architecture search (NAS) automates the design of NN architectures. NAS attempts to find well-performing NN models for specialized datsets, where performance is measured by key metrics that capture the NN capabilities (e.g., accuracy of classification of samples in a dataset). Existing NAS methods are resource intensive, especially when searching for highly accurate models for larger and larger datasets. To address this problem, we propose a performance estimation strategy that reduces the resources for training NNs and increases NAS throughput without jeopardizing accuracy. We implement our strategy via an engine called PEng4NN that plugs into existing NAS methods; in doing so, PEng4NN predicts the final accuracy of NNs early in the training process, informs the NAS of NN performance, and thus enables the NAS to terminate training NNs early. We assess our engine on three diverse datasets (i.e., CIFAR-100, Fashion MNIST, and SVHN). By reducing the training epochs needed, our engine achieves substantial throughput gain; on average, our engine saves 61% to 82% of training epochs, increasing throughput by a factor of 2.5 to 5 compared to a state-of-the-art NAS method. We achieve this gain without compromising accuracy, as we demonstrate with two key outcomes. First, across all our tests, between 74% and 97% of the ground truth best models lie in our set of predicted best models. Second, the accuracy distributions of the ground truth best models and our predicted best models are comparable, with the mean accuracy values differing by at most .7 percentage points across all tests.
This paper focuses on sentiment mining and sentiment correlation analysis of web events. Although neural network models have contributed a lot to mining text information, little attention is paid to analysis of the inter-sentiment correlations. This paper fills the gap between sentiment calculation and inter-sentiment correlations. In this paper, the social emotion is divided into six categories: love, joy, anger, sadness, fear, and surprise. Two deep neural network models are presented for sentiment calculation. Three datasets - the titles, the bodies, the comments of news articles - are collected, covering both objective and subjective texts in varying lengths (long and short). From each dataset, three kinds of features are extracted: explicit expression, implicit expression, and alphabet characters. The performance of the two models are analyzed, with respect to each of the three kinds of the features. There is controversial phenomenon on the interpretation of anger (fn) and love (gd). In subjective text, other emotions are easily to be considered as anger. By contrast, in objective news bodies and titles, it is easy to regard text as caused love (gd). It means, journalist may want to arouse emotion love by writing news, but cause anger after the news is published. This result reflects the sentiment complexity and unpredictability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا