ترغب بنشر مسار تعليمي؟ اضغط هنا

MECT: Multi-Metadata Embedding based Cross-Transformer for Chinese Named Entity Recognition

145   0   0.0 ( 0 )
 نشر من قبل Zhenhua Feng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, word enhancement has become very popular for Chinese Named Entity Recognition (NER), reducing segmentation errors and increasing the semantic and boundary information of Chinese words. However, these methods tend to ignore the information of the Chinese character structure after integrating the lexical information. Chinese characters have evolved from pictographs since ancient times, and their structure often reflects more information about the characters. This paper presents a novel Multi-metadata Embedding based Cross-Transformer (MECT) to improve the performance of Chinese NER by fusing the structural information of Chinese characters. Specifically, we use multi-metadata embedding in a two-stream Transformer to integrate Chinese character features with the radical-level embedding. With the structural characteristics of Chinese characters, MECT can better capture the semantic information of Chinese characters for NER. The experimental results obtained on several well-known benchmarking datasets demonstrate the merits and superiority of the proposed MECT method.footnote{The source code of the proposed method is publicly available at https://github.com/CoderMusou/MECT4CNER.



قيم البحث

اقرأ أيضاً

79 - Jiatong Li , Kui Meng 2021
Pre-trained language models lead Named Entity Recognition (NER) into a new era, while some more knowledge is needed to improve their performance in specific problems. In Chinese NER, character substitution is a complicated linguistic phenomenon. Some Chinese characters are quite similar for sharing the same components or having similar pronunciations. People replace characters in a named entity with similar characters to generate a new collocation but referring to the same object. It becomes even more common in the Internet age and is often used to avoid Internet censorship or just for fun. Such character substitution is not friendly to those pre-trained language models because the new collocations are occasional. As a result, it always leads to unrecognizable or recognition errors in the NER task. In this paper, we propose a new method, Multi-Feature Fusion Embedding for Chinese Named Entity Recognition (MFE-NER), to strengthen the language pattern of Chinese and handle the character substitution problem in Chinese Named Entity Recognition. MFE fuses semantic, glyph, and phonetic features together. In the glyph domain, we disassemble Chinese characters into components to denote structure features so that characters with similar structures can have close embedding space representation. Meanwhile, an improved phonetic system is also proposed in our work, making it reasonable to calculate phonetic similarity among Chinese characters. Experiments demonstrate that our method improves the overall performance of Chinese NER and especially performs well in informal language environments.
119 - Zihan Liu , Yan Xu , Tiezheng Yu 2020
Cross-domain named entity recognition (NER) models are able to cope with the scarcity issue of NER samples in target domains. However, most of the existing NER benchmarks lack domain-specialized entity types or do not focus on a certain domain, leadi ng to a less effective cross-domain evaluation. To address these obstacles, we introduce a cross-domain NER dataset (CrossNER), a fully-labeled collection of NER data spanning over five diverse domains with specialized entity categories for different domains. Additionally, we also provide a domain-related corpus since using it to continue pre-training language models (domain-adaptive pre-training) is effective for the domain adaptation. We then conduct comprehensive experiments to explore the effectiveness of leveraging different levels of the domain corpus and pre-training strategies to do domain-adaptive pre-training for the cross-domain task. Results show that focusing on the fractional corpus containing domain-specialized entities and utilizing a more challenging pre-training strategy in domain-adaptive pre-training are beneficial for the NER domain adaptation, and our proposed method can consistently outperform existing cross-domain NER baselines. Nevertheless, experiments also illustrate the challenge of this cross-domain NER task. We hope that our dataset and baselines will catalyze research in the NER domain adaptation area. The code and data are available at https://github.com/zliucr/CrossNER.
Identifying the named entities mentioned in text would enrich many semantic applications at the downstream level. However, due to the predominant usage of colloquial language in microblogs, the named entity recognition (NER) in Chinese microblogs exp erience significant performance deterioration, compared with performing NER in formal Chinese corpus. In this paper, we propose a simple yet effective neural framework to derive the character-level embeddings for NER in Chinese text, named ME-CNER. A character embedding is derived with rich semantic information harnessed at multiple granularities, ranging from radical, character to word levels. The experimental results demonstrate that the proposed approach achieves a large performance improvement on Weibo dataset and comparable performance on MSRA news dataset with lower computational cost against the existing state-of-the-art alternatives.
Named entity recognition (NER) is a fundamental component in many applications, such as Web Search and Voice Assistants. Although deep neural networks greatly improve the performance of NER, due to the requirement of large amounts of training data, d eep neural networks can hardly scale out to many languages in an industry setting. To tackle this challenge, cross-lingual NER transfers knowledge from a rich-resource language to languages with low resources through pre-trained multilingual language models. Instead of using training data in target languages, cross-lingual NER has to rely on only training data in source languages, and optionally adds the translated training data derived from source languages. However, the existing cross-lingual NER methods do not make good use of rich unlabeled data in target languages, which is relatively easy to collect in industry applications. To address the opportunities and challenges, in this paper we describe our novel practice in Microsoft to leverage such large amounts of unlabeled data in target languages in real production settings. To effectively extract weak supervision signals from the unlabeled data, we develop a novel approach based on the ideas of semi-supervised learning and reinforcement learning. The empirical study on three benchmark data sets verifies that our approach establishes the new state-of-the-art performance with clear edges. Now, the NER techniques reported in this paper are on their way to become a fundamental component for Web ranking, Entity Pane, Answers Triggering, and Question Answering in the Microsoft Bing search engine. Moreover, our techniques will also serve as part of the Spoken Language Understanding module for a commercial voice assistant. We plan to open source the code of the prototype framework after deployment.
125 - Jiangxu Wu 2021
This paper presents a simple and effective approach in low-resource named entity recognition (NER) based on multi-hop dependency trigger. Dependency trigger refer to salient nodes relative to a entity in the dependency graph of a context sentence. Ou r main observation is that there often exists trigger which play an important role to recognize the location and type of entity in sentence. Previous research has used manual labelling of trigger. Our main contribution is to propose use a syntactic parser to automatically annotate trigger. Experiments on two English datasets (CONLL 2003 and BC5CDR) show that the proposed method is comparable to the previous trigger-based NER model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا