ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-shot Cross-lingual Transfer of Neural Machine Translation with Multilingual Pretrained Encoders

158   0   0.0 ( 0 )
 نشر من قبل Guanhua Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Previous works mainly focus on improving cross-lingual transfer for NLU tasks with multilingual pretrained encoder (MPE), or improving the translation performance on NMT task with BERT. However, how to improve the cross-lingual transfer of NMT model with multilingual pretrained encoder is under-explored. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with one parallel dataset and an off-the-shelf MPE, then is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. The SixT model leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. The extensive experiments prove that SixT significantly improves the translation quality of the unseen languages. With much less computation cost and training data, our model achieves better performance on many-to-English testsets than CRISS and m2m-100, two strong multilingual NMT baselines.



قيم البحث

اقرأ أيضاً

Transferring representations from large supervised tasks to downstream tasks has shown promising results in AI fields such as Computer Vision and Natural Language Processing (NLP). In parallel, the recent progress in Machine Translation (MT) has enab led one to train multilingual Neural MT (NMT) systems that can translate between multiple languages and are also capable of performing zero-shot translation. However, little attention has been paid to leveraging representations learned by a multilingual NMT system to enable zero-shot multilinguality in other NLP tasks. In this paper, we demonstrate a simple framework, a multilingual Encoder-Classifier, for cross-lingual transfer learning by reusing the encoder from a multilingual NMT system and stitching it with a task-specific classifier component. Our proposed model achieves significant improvements in the English setup on three benchmark tasks - Amazon Reviews, SST and SNLI. Further, our system can perform classification in a new language for which no classification data was seen during training, showing that zero-shot classification is possible and remarkably competitive. In order to understand the underlying factors contributing to this finding, we conducted a series of analyses on the effect of the shared vocabulary, the training data type for NMT, classifier complexity, encoder representation power, and model generalization on zero-shot performance. Our results provide strong evidence that the representations learned from multilingual NMT systems are widely applicable across languages and tasks.
Multilingual machine translation enables a single model to translate between different languages. Most existing multilingual machine translation systems adopt a randomly initialized Transformer backbone. In this work, inspired by the recent success o f language model pre-training, we present XLM-T, which initializes the model with an off-the-shelf pretrained cross-lingual Transformer encoder and fine-tunes it with multilingual parallel data. This simple method achieves significant improvements on a WMT dataset with 10 language pairs and the OPUS-100 corpus with 94 pairs. Surprisingly, the method is also effective even upon the strong baseline with back-translation. Moreover, extensive analysis of XLM-T on unsupervised syntactic parsing, word alignment, and multilingual classification explains its effectiveness for machine translation. The code will be at https://aka.ms/xlm-t.
Transfer learning between different language pairs has shown its effectiveness for Neural Machine Translation (NMT) in low-resource scenario. However, existing transfer methods involving a common target language are far from success in the extreme sc enario of zero-shot translation, due to the language space mismatch problem between transferor (the parent model) and transferee (the child model) on the source side. To address this challenge, we propose an effective transfer learning approach based on cross-lingual pre-training. Our key idea is to make all source languages share the same feature space and thus enable a smooth transition for zero-shot translation. To this end, we introduce one monolingual pre-training method and two bilingual pre-training methods to obtain a universal encoder for different languages. Once the universal encoder is constructed, the parent model built on such encoder is trained with large-scale annotated data and then directly applied in zero-shot translation scenario. Experiments on two public datasets show that our approach significantly outperforms strong pivot-based baseline and various multilingual NMT approaches.
We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no change in the model architecture from our base system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. The rest of the model, which includes encoder, decoder and attention, remains unchanged and is shared across all languages. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT using a single model without any increase in parameters, which is significantly simpler than previous proposals for Multilingual NMT. Our method often improves the translation quality of all involved language pairs, even while keeping the total number of model parameters constant. On the WMT14 benchmarks, a single multilingual model achieves comparable performance for English$rightarrow$French and surpasses state-of-the-art results for English$rightarrow$German. Similarly, a single multilingual model surpasses state-of-the-art results for French$rightarrow$English and German$rightarrow$English on WMT14 and WMT15 benchmarks respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. In addition to improving the translation quality of language pairs that the model was trained with, our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and show some interesting examples when mixing languages.
The recently proposed massively multilingual neural machine translation (NMT) system has been shown to be capable of translating over 100 languages to and from English within a single model. Its improved translation performance on low resource langua ges hints at potential cross-lingual transfer capability for downstream tasks. In this paper, we evaluate the cross-lingual effectiveness of representations from the encoder of a massively multilingual NMT model on 5 downstream classification and sequence labeling tasks covering a diverse set of over 50 languages. We compare against a strong baseline, multilingual BERT (mBERT), in different cross-lingual transfer learning scenarios and show gains in zero-shot transfer in 4 out of these 5 tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا