ترغب بنشر مسار تعليمي؟ اضغط هنا

Cross-lingual Pre-training Based Transfer for Zero-shot Neural Machine Translation

335   0   0.0 ( 0 )
 نشر من قبل Zhirui Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Transfer learning between different language pairs has shown its effectiveness for Neural Machine Translation (NMT) in low-resource scenario. However, existing transfer methods involving a common target language are far from success in the extreme scenario of zero-shot translation, due to the language space mismatch problem between transferor (the parent model) and transferee (the child model) on the source side. To address this challenge, we propose an effective transfer learning approach based on cross-lingual pre-training. Our key idea is to make all source languages share the same feature space and thus enable a smooth transition for zero-shot translation. To this end, we introduce one monolingual pre-training method and two bilingual pre-training methods to obtain a universal encoder for different languages. Once the universal encoder is constructed, the parent model built on such encoder is trained with large-scale annotated data and then directly applied in zero-shot translation scenario. Experiments on two public datasets show that our approach significantly outperforms strong pivot-based baseline and various multilingual NMT approaches.



قيم البحث

اقرأ أيضاً

Multilingual pre-trained models have achieved remarkable transfer performance by pre-trained on rich kinds of languages. Most of the models such as mBERT are pre-trained on unlabeled corpora. The static and contextual embeddings from the models could not be aligned very well. In this paper, we aim to improve the zero-shot cross-lingual transfer performance by aligning the embeddings better. We propose a pre-training task named Alignment Language Model (AlignLM), which uses the statistical alignment information as the prior knowledge to guide bilingual word prediction. We evaluate our method on multilingual machine reading comprehension and natural language interface tasks. The results show AlignLM can improve the zero-shot performance significantly on MLQA and XNLI datasets.
Previous works mainly focus on improving cross-lingual transfer for NLU tasks with multilingual pretrained encoder (MPE), or improving the translation performance on NMT task with BERT. However, how to improve the cross-lingual transfer of NMT model with multilingual pretrained encoder is under-explored. In this paper, we focus on a zero-shot cross-lingual transfer task in NMT. In this task, the NMT model is trained with one parallel dataset and an off-the-shelf MPE, then is directly tested on zero-shot language pairs. We propose SixT, a simple yet effective model for this task. The SixT model leverages the MPE with a two-stage training schedule and gets further improvement with a position disentangled encoder and a capacity-enhanced decoder. The extensive experiments prove that SixT significantly improves the translation quality of the unseen languages. With much less computation cost and training data, our model achieves better performance on many-to-English testsets than CRISS and m2m-100, two strong multilingual NMT baselines.
Transferring representations from large supervised tasks to downstream tasks has shown promising results in AI fields such as Computer Vision and Natural Language Processing (NLP). In parallel, the recent progress in Machine Translation (MT) has enab led one to train multilingual Neural MT (NMT) systems that can translate between multiple languages and are also capable of performing zero-shot translation. However, little attention has been paid to leveraging representations learned by a multilingual NMT system to enable zero-shot multilinguality in other NLP tasks. In this paper, we demonstrate a simple framework, a multilingual Encoder-Classifier, for cross-lingual transfer learning by reusing the encoder from a multilingual NMT system and stitching it with a task-specific classifier component. Our proposed model achieves significant improvements in the English setup on three benchmark tasks - Amazon Reviews, SST and SNLI. Further, our system can perform classification in a new language for which no classification data was seen during training, showing that zero-shot classification is possible and remarkably competitive. In order to understand the underlying factors contributing to this finding, we conducted a series of analyses on the effect of the shared vocabulary, the training data type for NMT, classifier complexity, encoder representation power, and model generalization on zero-shot performance. Our results provide strong evidence that the representations learned from multilingual NMT systems are widely applicable across languages and tasks.
Intermediate-task training---fine-tuning a pretrained model on an intermediate task before fine-tuning again on the target task---often improves model performance substantially on language understanding tasks in monolingual English settings. We inves tigate whether English intermediate-task training is still helpful on non-English target tasks. Using nine intermediate language-understanding tasks, we evaluate intermediate-task transfer in a zero-shot cross-lingual setting on the XTREME benchmark. We see large improvements from intermediate training on the BUCC and Tatoeba sentence retrieval tasks and moderate improvements on question-answering target tasks. MNLI, SQuAD and HellaSwag achieve the best overall results as intermediate tasks, while multi-task intermediate offers small additional improvements. Using our best intermediate-task models for each target task, we obtain a 5.4 point improvement over XLM-R Large on the XTREME benchmark, setting the state of the art as of June 2020. We also investigate continuing multilingual MLM during intermediate-task training and using machine-translated intermediate-task data, but neither consistently outperforms simply performing English intermediate-task training.
The goal of stance detection is to determine the viewpoint expressed in a piece of text towards a target. These viewpoints or contexts are often expressed in many different languages depending on the user and the platform, which can be a local news o utlet, a social media platform, a news forum, etc. Most research in stance detection, however, has been limited to working with a single language and on a few limited targets, with little work on cross-lingual stance detection. Moreover, non-English sources of labelled data are often scarce and present additional challenges. Recently, large multilingual language models have substantially improved the performance on many non-English tasks, especially such with limited numbers of examples. This highlights the importance of model pre-training and its ability to learn from few examples. In this paper, we present the most comprehensive study of cross-lingual stance detection to date: we experiment with 15 diverse datasets in 12 languages from 6 language families, and with 6 low-resource evaluation settings each. For our experiments, we build on pattern-exploiting training, proposing the addition of a novel label encoder to simplify the verbalisation procedure. We further propose sentiment-based generation of stance data for pre-training, which shows sizeable improvement of more than 6% F1 absolute in low-shot settings compared to several strong baselines.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا