ﻻ يوجد ملخص باللغة العربية
In this paper we consider the semi-discretization in space of a first order scalar transport equation. For the space discretization we use standard continuous finite elements. To obtain stability we add a penalty on the jump of the gradient over element faces. We recall some global error estimates for smooth and rough solutions and then prove a new local error estimate for the transient linear transport equation. In particular we show that in the stabilized method the effect of non-smooth features in the solution decay exponentially from the space time zone where the solution is rough so that smooth features will be transported unperturbed. Locally the $L^2$-norm error converges with the expected order $O(h^{k+frac12})$. We then illustrate the results numerically. In particular we show the good local accuracy in the smooth zone of the stabilized method and that the standard Galerkin fails to approximate a solution that is smooth at the final time if discontinuities have been present in the solution at some time during the evolution.
We consider a finite element method with symmetric stabilisation for the discretisation of the transient convection--diffusion equation. For the time-discretisation we consider either the second order backwards differentiation formula or the Crank-Ni
We propose a family of mixed finite element that is robust for the nearly incompressible strain gradient model, which is a fourth order singular perturbation elliptic system. The element is similar to the Taylor-Hood element in the Stokes flow. Using
In this paper, the optimal choice of the interior penalty parameter of the discontinuous Galerkin finite element methods for both the elliptic problems and the Biots systems are studied by utilizing the neural network and machine learning. It is cruc
In the present work we show some results on the effect of the Smagorinsky model on the stability of the associated perturbation equation. We show that in the presence of a spectral gap, such that the flow can be decomposed in a large scale with moder
A general adaptive refinement strategy for solving linear elliptic partial differential equation with random data is proposed and analysed herein. The adaptive strategy extends the a posteriori error estimation framework introduced by Guignard and No