ﻻ يوجد ملخص باللغة العربية
In this paper, the optimal choice of the interior penalty parameter of the discontinuous Galerkin finite element methods for both the elliptic problems and the Biots systems are studied by utilizing the neural network and machine learning. It is crucial to choose the optimal interior penalty parameter, which is not too small or not too large for the stability, robustness, and efficiency of the numerical discretized solutions. Both linear regression and nonlinear artificial neural network methods are employed and compared using several numerical experiments to illustrate the capability of our proposed computational framework. This framework is an integral part of a developing automated numerical simulation platform because it can automatically identify the optimal interior penalty parameter. Real-time feedback could also be implemented to update and improve model accuracy on the fly.
In this paper we analyze the convergence properties of two-level and W-cycle multigrid solvers for the numerical solution of the linear system of equations arising from hp-version symmetric interior penalty discontinuous Galerkin discretizations of s
This paper proposes and analyzes two fully discrete mixed interior penalty discontinuous Galerkin (DG) methods for the fourth order nonlinear Cahn-Hilliard equation. Both methods use the backward Euler method for time discretization and interior pena
We consider a finite element method with symmetric stabilisation for the discretisation of the transient convection--diffusion equation. For the time-discretisation we consider either the second order backwards differentiation formula or the Crank-Ni
In this paper we consider the semi-discretization in space of a first order scalar transport equation. For the space discretization we use standard continuous finite elements. To obtain stability we add a penalty on the jump of the gradient over elem
We present a parallel computing strategy for a hybridizable discontinuous Galerkin (HDG) nested geometric multigrid (GMG) solver. Parallel GMG solvers require a combination of coarse-grain and fine-grain parallelism to improve time to solution perfor