ترغب بنشر مسار تعليمي؟ اضغط هنا

Error estimates for the Smagorinsky turbulence model: enhanced stability through scale separation and numerical stabilization

104   0   0.0 ( 0 )
 نشر من قبل Erik Burman
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the present work we show some results on the effect of the Smagorinsky model on the stability of the associated perturbation equation. We show that in the presence of a spectral gap, such that the flow can be decomposed in a large scale with moderate gradient and a small amplitude fine scale with arbitratry gradient, the Smagorinsky model admits stability estimates for perturbations, with exponential growth depending only on the large scale gradient. We then show in the context of stabilized finite element methods that the same result carries over to the approximation and that in this context, for suitably chosen finite element spaces the Smagorinsky model acts as a stabilizer yielding close to optimal error estimates in the $L^2$-norm for smooth flows in the pre-asymptotic high Reynolds number regime.



قيم البحث

اقرأ أيضاً

Global spectral analysis (GSA) is used as a tool to test the accuracy of numerical methods with the help of canonical problems of convection and convection-diffusion equation which admit exact solutions. Similarly, events in turbulent flows computed by direct numerical simulation (DNS) are often calibrated with theoretical results of homogeneous isotropic turbulence due to Kolmogorov, as given in Turbulence -U. Frisch, Cambridge Univ. Press, UK (1995). However, numerical methods for the simulation of this problem are not calibrated, as by using GSA of convection and/or convection-diffusion equation. This is with the exception in A critical assessment of simulations for transitional and turbulence flows-Sengupta, T.K., In Proc. of IUTAM Symp. on Advances in Computation, Modeling and Control of Transitional and Turbulent Flows, pp 491-532, World Sci. Publ. Co. Pte. Ltd., Singapore (2016), where such a calibration has been advocated with the help of convection equation. For turbulent flows, an extreme event is characterized by the presence of length scales smaller than the Kolmogorov length scale, a heuristic limit for the largest wavenumber present without being converted to heat. With growing computer power, recently many simulations have been reported using a pseudo-spectral method, with spatial discretization performed in Fourier spectral space and a two-stage, Runge-Kutta (RK2) method for time discretization. But no analyses are reported to ensure high accuracy of such simulations. Here, an analysis is reported for few multi-stage Runge-Kutta methods in the Fourier spectral framework for convection and convection-diffusion equations. We identify the major source of error for the RK2-Fourier spectral method using GSA and also show how to avoid this error and specify numerical parameters for achieving highest accuracy possible to capture extreme events in turbulent flows.
In this paper stability and error estimates for time discretizations of linear and semilinear parabolic equations by the two-step backward differentiation formula (BDF2) method with variable step-sizes are derived. An affirmative answer is provided t o the question: whether the upper bound of step-size ratios for the $l^infty(0,T;H)$-stability of the BDF2 method for linear and semilinear parabolic equations is identical with the upper bound for the zero-stability. The $l^infty(0,T;V)$-stability of the variable step-size BDF2 method is also established under more relaxed condition on the ratios of consecutive step-sizes. Based on these stability results, error estimates in several different norms are derived. To utilize the BDF method the trapezoidal method and the backward Euler scheme are employed to compute the starting value. For the latter choice, order reduction phenomenon of the constant step-size BDF2 method is observed theoretically and numerically in several norms. Numerical results also illustrate the effectiveness of the proposed method for linear and semilinear parabolic equations.
75 - Zhenning Cai , Yanli Wang 2021
We solve the Boltzmann equation whose collision term is modeled by the hybridization of the binary collision and the BGK approximation. The parameter controlling the ratio of these two collision mechanisms is selected adaptively on every grid cell at every time step. This self-adaptation is based on a heuristic error indicator describing the difference between the model collision term and the original binary collision term. The indicator is derived by controlling the quadratic terms in the modeling error with linear operators. Our numerical experiments show that such error indicator is effective and computationally affordable.
215 - K. Mitra , M. Vohralik 2021
The Richards equation is commonly used to model the flow of water and air through soil, and it serves as a gateway equation for multiphase flows through porous media. It is a nonlinear advection-reaction-diffusion equation that exhibits both paraboli c-hyperbolic and parabolic-elliptic kinds of degeneracies. In this study, we provide reliable, fully computable, and locally space-time efficient a posteriori error bounds for numerical approximations of the fully degenerate Richards equation. For showing global reliability, a nonlocal-in-time error estimate is derived individually for the time-integrated $H^1(H^{-1})$, $L^2(L^2)$, and the $L^2(H^1)$ errors. A maximum principle and a degeneracy estimator are employed for the last one. Global and local space-time efficiency error bounds are then obtained in a standard $H^1(H^{-1})cap L^2(H^1)$ norm. The reliability and efficiency norms employed coincide when there is no nonlinearity. Moreover, error contributors such as flux nonconformity, time discretization, quadrature, linearization, and data oscillation are identified and separated. The estimates are also valid in a setting where iterative linearization with inexact solvers is considered. Numerical tests are conducted for nondegenerate and degenerate cases having exact solutions, as well as for a realistic case. It is shown that the estimators correctly identify the errors up to a factor of the order of unity.
140 - Erik Burman 2021
In this paper we consider the semi-discretization in space of a first order scalar transport equation. For the space discretization we use standard continuous finite elements. To obtain stability we add a penalty on the jump of the gradient over elem ent faces. We recall some global error estimates for smooth and rough solutions and then prove a new local error estimate for the transient linear transport equation. In particular we show that in the stabilized method the effect of non-smooth features in the solution decay exponentially from the space time zone where the solution is rough so that smooth features will be transported unperturbed. Locally the $L^2$-norm error converges with the expected order $O(h^{k+frac12})$. We then illustrate the results numerically. In particular we show the good local accuracy in the smooth zone of the stabilized method and that the standard Galerkin fails to approximate a solution that is smooth at the final time if discontinuities have been present in the solution at some time during the evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا