ﻻ يوجد ملخص باللغة العربية
Many new strong gravitational lensing (SGL) systems have been discovered in the last two decades with the advent of powerful new space and ground-based telescopes. The effect of the lens mass model (usually the power-law mass model) on cosmological parameters constraints has been performed recently in literature. In this paper, by using SGL systems and Supernovae type Ia observations, we explore if the power-law mass density profile ($rho propto r^{-gamma}$) is consistent with the cosmic distance duality relation (CDDR), $D_L(1+z)^{-2}/D_A=eta(z)=1$, by considering different lens mass intervals. { It has been obtained that the verification of the CDDR validity is significantly dependent on lens mass interval considered: the sub-sample with $sigma_{ap} geq 300$ km/s (where $sigma_{ap}$ is the lens apparent stellar velocity dispersion) is in full agreement with the CDDR validity, the sub-sample with intermediate $sigma_{ap}$ values ($200 leq sigma_{ap} < 300)$ km/s is marginally consistent with $eta=1$ and, finally, the sub-sample with low $sigma_{ap}$ values ($sigma_{ap} < 200$ km/s) ruled out the CDDR validity with high statistical confidence. Therefore, if one takes the CDDR as guarantee, our results suggest that using a single density profile is not suitable to describe lens with low $sigma_{ap}$ values and it is only an approximate description to lenses with intermediate mass interval. }
We consider three extensions of the Navarro, Frenk and White (NFW) profile and investigate the intrinsic degeneracies among the density profile parameters on the gravitational lensing effect of satellite galaxies on highly magnified Einstein rings. I
The construction of the cosmic distance-duality relation (CDDR) has been widely studied. However, its consistency with various new observables remains a topic of interest. We present a new way to constrain the CDDR $eta(z)$ using different dynamic an
We present an analysis of the evolution of the central mass-density profile of massive elliptical galaxies from the SLACS and BELLS strong gravitational lens samples over the redshift interval z ~ 0.1-0.6, based on the combination of strong-lensing a
In metric theories of gravity with photon number conservation, the luminosity and angular diameter distances are related via the Etherington relation, also known as the distance-duality relation (DDR). A violation of this relation would rule out the
A distance-deviation consistency and model-independent method to test the cosmic distance duality relation (CDDR) is provided. The method is worth attention on two aspects: firstly, a distance-deviation consistency method is used to pair subsamples: