ﻻ يوجد ملخص باللغة العربية
We present an analysis of the evolution of the central mass-density profile of massive elliptical galaxies from the SLACS and BELLS strong gravitational lens samples over the redshift interval z ~ 0.1-0.6, based on the combination of strong-lensing aperture mass and stellar velocity-dispersion constraints. We find a significant trend towards steeper mass profiles (parameterized by the power-law density model with rho ~ r^[-gamma]) at later cosmic times, with magnitude d<gamma>/dz = -0.60 +/- 0.15. We show that the combined lens-galaxy sample is consistent with a non-evolving distribution of stellar velocity dispersions. Considering possible additional dependence of <gamma> on lens-galaxy stellar mass, effective radius, and Sersic index, we find marginal evidence for shallower mass profiles at higher masses and larger sizes, but with a significance that is sub-dominant to the redshift dependence. Using the results of published Monte Carlo simulations of spectroscopic lens surveys, we verify that our mass-profile evolution result cannot be explained by lensing selection biases as a function of redshift. Interpreted as a true evolutionary signal, our result suggests that major dry mergers involving off-axis trajectories play a significant role in the evolution of the average mass-density structure of massive early-type galaxies over the past 6 Gyr. We also consider an alternative non-evolutionary hypothesis based on variations in the strong-lensing measurement aperture with redshift, which would imply the detection of an inflection zone marking the transition between the baryon-dominated and dark-matter halo-dominated regions of the lens galaxies. Further observations of the combined SLACS+BELLS sample can constrain this picture more precisely, and enable a more detailed investigation of the multivariate dependences of galaxy mass structure across cosmic time.
Many new strong gravitational lensing (SGL) systems have been discovered in the last two decades with the advent of powerful new space and ground-based telescopes. The effect of the lens mass model (usually the power-law mass model) on cosmological p
We introduce the Baryon Oscillation Spectroscopic Survey (BOSS) Emission-Line Lens Survey (BELLS) for GALaxy-Ly$alpha$ EmitteR sYstems (BELLS GALLERY) Survey, which is a Hubble Space Telescope program to image a sample of galaxy-scale strong gravitat
We consider three extensions of the Navarro, Frenk and White (NFW) profile and investigate the intrinsic degeneracies among the density profile parameters on the gravitational lensing effect of satellite galaxies on highly magnified Einstein rings. I
We present the definitive data for the full sample of 131 strong gravitational lens candidates observed with the Advanced Camera for Surveys (ACS) aboard the Hubble Space Telescope by the Sloan Lens ACS (SLACS) Survey. All targets were selected for h
Galaxies located in the environment or on the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of $H_0$ from the time-delay technique. We present the results