ﻻ يوجد ملخص باللغة العربية
Disordered solids respond to quasistatic shear with intermittent avalanches of plastic activity, an example of the crackling noise observed in many nonequilibrium critical systems. The temporal power spectrum of activity within disordered solids consists of three distinct domains: a novel power-law rise with frequency at low frequencies indicating anticorrelation, white-noise at intermediate frequencies, and a power-law decay at high frequencies. As the strain rate increases, the white-noise regime shrinks and ultimately disappears as the finite strain rate restricts the maximum size of an avalanche. A new strain-rate- and system-size-dependent scaling theory is derived for power spectra in both the quasistatic and finite-strain-rate regimes. This theory is validated using data from overdamped two- and three-dimensional molecular dynamics simulations. We identify important exponents in the yielding transition including the dynamic exponent $z$ which relates the size of an avalanche to its duration, the fractal dimension of avalanches, and the exponent characterizing the divergence in correlations with strain rate. Results are related to temporal correlations within a single avalanche and between multiple avalanches.
Rate-effects in sheared disordered solids are studied using molecular dynamics simulations of binary Lennard-Jones glasses in two and three dimensions. In the quasistatic (QS) regime, systems exhibit critical behavior: the magnitudes of avalanches ar
In a recent paper [S. Mandal et al., Phys. Rev. E 88, 022129 (2013)] the nature of spatial correlations of plasticity in hard sphere glasses was addressed both via computer simulations and in experiments. It was found that the experimentally obtained
The existence of power-law distributions is only a first requirement in the validation of the critical behavior of a system. Long-range spatio-temporal correlations are fundamental for the spontaneous neuronal activity to be the expression of a syste
When an amorphous solid is deformed cyclically, it may reach a steady state in which the paths of constituent particles trace out closed loops that repeat in each driving cycle. A remarkable variant has been noticed in simulations where the period of
Amorphous solids lack long-range order. Therefore identifying structural defects -- akin to dislocations in crystalline solids -- that carry plastic flow in these systems remains a daunting challenge. By comparing many different structural indicators