ﻻ يوجد ملخص باللغة العربية
In a recent paper [S. Mandal et al., Phys. Rev. E 88, 022129 (2013)] the nature of spatial correlations of plasticity in hard sphere glasses was addressed both via computer simulations and in experiments. It was found that the experimentally obtained correlations obey a power law whereas the correlations from simulations are better fitted by an exponential decay. We here provide direct evidence--- via simulations of a hard sphere glass in 2D---that this discrepancy is a consequence of the finite system size in the 3D simulations. By extending the study to a 2D soft disk model at zero temperature, the robustness of the power-law decay in sheared amorphous solids is underlined. Deviations from a power law occur when either reducing the packing fraction towards the supercooled regime in the case of hard spheres or changing the dissipation mechanism from contact dissipation to a mean-field type drag for the case of soft disks.
Molecular dynamics simulations are carried out to investigate mechanical properties and porous structure of binary glasses subjected to steady shear. The model vitreous systems were prepared via thermal quench at constant volume to a temperature well
Multiple transient memories, originally discovered in charge-density-wave conductors, are a remarkable and initially counterintuitive example of how a system can store information about its driving. In this class of memories, a system can learn multi
The microscopic deformation mechanism of charged colloidal glasses with extended-range interactions under shear is investigated by in-situ small-angle neutron scattering, and a dynamically correlated region (DCR) is identified. This short-lived regio
Disordered solids respond to quasistatic shear with intermittent avalanches of plastic activity, an example of the crackling noise observed in many nonequilibrium critical systems. The temporal power spectrum of activity within disordered solids cons
Via event driven molecular dynamics simulations and experiments, we study the packing fraction and shear-rate dependence of single particle fluctuations and dynamic correlations in hard sphere glasses under shear. At packing fractions above the glass