ﻻ يوجد ملخص باللغة العربية
Rate-effects in sheared disordered solids are studied using molecular dynamics simulations of binary Lennard-Jones glasses in two and three dimensions. In the quasistatic (QS) regime, systems exhibit critical behavior: the magnitudes of avalanches are power-law distributed with a maximum cutoff that diverges with increasing system size $L$. With increasing rate, systems move away from the critical yielding point and the average flow stress rises as a power of the strain rate with exponent $1/beta$, the Herschel-Bulkley exponent. Finite-size scaling collapses of the stress are used to measure $beta$ as well as the exponent $ u$ which characterizes the divergence of the correlation length. The stress and kinetic energy per particle experience fluctuations with strain that scale as $L^{-d/2}$. As the largest avalanche in a system scales as $L^alpha$, this implies $alpha < d/2$. The diffusion rate of particles diverges as a power of decreasing rate before saturating in the QS regime. A scaling theory for the diffusion is derived using the QS avalanche rate distribution and generalized to the finite strain rate regime. This theory is used to collapse curves for different system sizes and confirm $beta/ u$.
Disordered solids respond to quasistatic shear with intermittent avalanches of plastic activity, an example of the crackling noise observed in many nonequilibrium critical systems. The temporal power spectrum of activity within disordered solids cons
In soft amorphous materials, shear cessation after large shear deformation leads to structures having residual shear stress. The origin of these states and the distribution of the local shear stresses within the material is not well understood, despi
Granular packings of non-convex or elongated particles can form free-standing structures like walls or arches. For some particle shapes, such as staples, the rigidity arises from interlocking of pairs of particles, but the origins of rigidity for non
When an amorphous solid is deformed cyclically, it may reach a steady state in which the paths of constituent particles trace out closed loops that repeat in each driving cycle. A remarkable variant has been noticed in simulations where the period of
Amorphous solids lack long-range order. Therefore identifying structural defects -- akin to dislocations in crystalline solids -- that carry plastic flow in these systems remains a daunting challenge. By comparing many different structural indicators