ﻻ يوجد ملخص باللغة العربية
An LBYL (`Look Before You Leap) Network is proposed for end-to-end trainable one-stage visual grounding. The idea behind LBYL-Net is intuitive and straightforward: we follow a languages description to localize the target object based on its relative spatial relation to `Landmarks, which is characterized by some spatial positional words and some descriptive words about the object. The core of our LBYL-Net is a landmark feature convolution module that transmits the visual features with the guidance of linguistic description along with different directions. Consequently, such a module encodes the relative spatial positional relations between the current object and its context. Then we combine the contextual information from the landmark feature convolution module with the targets visual features for grounding. To make this landmark feature convolution light-weight, we introduce a dynamic programming algorithm (termed dynamic max pooling) with low complexity to extract the landmark feature. Thanks to the landmark feature convolution module, we mimic the human behavior of `Look Before You Leap to design an LBYL-Net, which takes full consideration of contextual information. Extensive experiments show our methods effectiveness in four grounding datasets. Specifically, our LBYL-Net outperforms all state-of-the-art two-stage and one-stage methods on ReferitGame. On RefCOCO and RefCOCO+, Our LBYL-Net also achieves comparable results or even better results than existing one-stage methods.
Visual Grounding (VG) aims to locate the most relevant region in an image, based on a flexible natural language query but not a pre-defined label, thus it can be a more useful technique than object detection in practice. Most state-of-the-art methods
We improve one-stage visual grounding by addressing current limitations on grounding long and complex queries. Existing one-stage methods encode the entire language query as a single sentence embedding vector, e.g., taking the embedding from BERT or
While most conversational AI systems focus on textual dialogue only, conditioning utterances on visual context (when its available) can lead to more realistic conversations. Unfortunately, a major challenge for incorporating visual context into conve
This paper revisits feature pyramids networks (FPN) for one-stage detectors and points out that the success of FPN is due to its divide-and-conquer solution to the optimization problem in object detection rather than multi-scale feature fusion. From
Visual affordance grounding aims to segment all possible interaction regions between people and objects from an image/video, which is beneficial for many applications, such as robot grasping and action recognition. However, existing methods mainly re