ترغب بنشر مسار تعليمي؟ اضغط هنا

Look Before You Leap: Learning Landmark Features for One-Stage Visual Grounding

120   0   0.0 ( 0 )
 نشر من قبل Binbin Huang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

An LBYL (`Look Before You Leap) Network is proposed for end-to-end trainable one-stage visual grounding. The idea behind LBYL-Net is intuitive and straightforward: we follow a languages description to localize the target object based on its relative spatial relation to `Landmarks, which is characterized by some spatial positional words and some descriptive words about the object. The core of our LBYL-Net is a landmark feature convolution module that transmits the visual features with the guidance of linguistic description along with different directions. Consequently, such a module encodes the relative spatial positional relations between the current object and its context. Then we combine the contextual information from the landmark feature convolution module with the targets visual features for grounding. To make this landmark feature convolution light-weight, we introduce a dynamic programming algorithm (termed dynamic max pooling) with low complexity to extract the landmark feature. Thanks to the landmark feature convolution module, we mimic the human behavior of `Look Before You Leap to design an LBYL-Net, which takes full consideration of contextual information. Extensive experiments show our methods effectiveness in four grounding datasets. Specifically, our LBYL-Net outperforms all state-of-the-art two-stage and one-stage methods on ReferitGame. On RefCOCO and RefCOCO+, Our LBYL-Net also achieves comparable results or even better results than existing one-stage methods.



قيم البحث

اقرأ أيضاً

150 - Chaorui Deng , Qi Wu , Guanghui Xu 2019
Visual Grounding (VG) aims to locate the most relevant region in an image, based on a flexible natural language query but not a pre-defined label, thus it can be a more useful technique than object detection in practice. Most state-of-the-art methods in VG operate in a two-stage manner, wherein the first stage an object detector is adopted to generate a set of object proposals from the input image and the second stage is simply formulated as a cross-modal matching problem that finds the best match between the language query and all region proposals. This is rather inefficient because there might be hundreds of proposals produced in the first stage that need to be compared in the second stage, not to mention this strategy performs inaccurately. In this paper, we propose an simple, intuitive and much more elegant one-stage detection based method that joints the region proposal and matching stage as a single detection network. The detection is conditioned on the input query with a stack of novel Relation-to-Attention modules that transform the image-to-query relationship to an relation map, which is used to predict the bounding box directly without proposing large numbers of useless region proposals. During the inference, our approach is about 20x ~ 30x faster than previous methods and, remarkably, it achieves 18% ~ 41% absolute performance improvement on top of the state-of-the-art results on several benchmark datasets. We release our code and all the pre-trained models at https://github.com/openblack/rvg.
We improve one-stage visual grounding by addressing current limitations on grounding long and complex queries. Existing one-stage methods encode the entire language query as a single sentence embedding vector, e.g., taking the embedding from BERT or the hidden state from LSTM. This single vector representation is prone to overlooking the detailed descriptions in the query. To address this query modeling deficiency, we propose a recursive sub-query construction framework, which reasons between image and query for multiple rounds and reduces the referring ambiguity step by step. We show our new one-stage method obtains 5.0%, 4.5%, 7.5%, 12.8% absolute improvements over the state-of-the-art one-stage baseline on ReferItGame, RefCOCO, RefCOCO+, and RefCOCOg, respectively. In particular, superior performances on longer and more complex queries validates the effectiveness of our query modeling.
While most conversational AI systems focus on textual dialogue only, conditioning utterances on visual context (when its available) can lead to more realistic conversations. Unfortunately, a major challenge for incorporating visual context into conve rsational dialogue is the lack of large-scale labeled datasets. We provide a solution in the form of a new visually conditioned Future Utterance Prediction task. Our task involves predicting the next utterance in a video, using both visual frames and transcribed speech as context. By exploiting the large number of instructional videos online, we train a model to solve this task at scale, without the need for manual annotations. Leveraging recent advances in multimodal learning, our model consists of a novel co-attentional multimodal video transformer, and when trained on both textual and visual context, outperforms baselines that use textual inputs alone. Further, we demonstrate that our model trained for this task on unlabelled videos achieves state-of-the-art performance on a number of downstream VideoQA benchmarks such as MSRVTT-QA, MSVD-QA, ActivityNet-QA and How2QA.
This paper revisits feature pyramids networks (FPN) for one-stage detectors and points out that the success of FPN is due to its divide-and-conquer solution to the optimization problem in object detection rather than multi-scale feature fusion. From the perspective of optimization, we introduce an alternative way to address the problem instead of adopting the complex feature pyramids - {em utilizing only one-level feature for detection}. Based on the simple and efficient solution, we present You Only Look One-level Feature (YOLOF). In our method, two key components, Dilated Encoder and Uniform Matching, are proposed and bring considerable improvements. Extensive experiments on the COCO benchmark prove the effectiveness of the proposed model. Our YOLOF achieves comparable results with its feature pyramids counterpart RetinaNet while being $2.5times$ faster. Without transformer layers, YOLOF can match the performance of DETR in a single-level feature manner with $7times$ less training epochs. With an image size of $608times608$, YOLOF achieves 44.3 mAP running at 60 fps on 2080Ti, which is $13%$ faster than YOLOv4. Code is available at url{https://github.com/megvii-model/YOLOF}.
Visual affordance grounding aims to segment all possible interaction regions between people and objects from an image/video, which is beneficial for many applications, such as robot grasping and action recognition. However, existing methods mainly re ly on the appearance feature of the objects to segment each region of the image, which face the following two problems: (i) there are multiple possible regions in an object that people interact with; and (ii) there are multiple possible human interactions in the same object region. To address these problems, we propose a Hand-aided Affordance Grounding Network (HAGNet) that leverages the aided clues provided by the position and action of the hand in demonstration videos to eliminate the multiple possibilities and better locate the interaction regions in the object. Specifically, HAG-Net has a dual-branch structure to process the demonstration video and object image. For the video branch, we introduce hand-aided attention to enhance the region around the hand in each video frame and then use the LSTM network to aggregate the action features. For the object branch, we introduce a semantic enhancement module (SEM) to make the network focus on different parts of the object according to the action classes and utilize a distillation loss to align the output features of the object branch with that of the video branch and transfer the knowledge in the video branch to the object branch. Quantitative and qualitative evaluations on two challenging datasets show that our method has achieved stateof-the-art results for affordance grounding. The source code will be made available to the public.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا