ﻻ يوجد ملخص باللغة العربية
While most conversational AI systems focus on textual dialogue only, conditioning utterances on visual context (when its available) can lead to more realistic conversations. Unfortunately, a major challenge for incorporating visual context into conversational dialogue is the lack of large-scale labeled datasets. We provide a solution in the form of a new visually conditioned Future Utterance Prediction task. Our task involves predicting the next utterance in a video, using both visual frames and transcribed speech as context. By exploiting the large number of instructional videos online, we train a model to solve this task at scale, without the need for manual annotations. Leveraging recent advances in multimodal learning, our model consists of a novel co-attentional multimodal video transformer, and when trained on both textual and visual context, outperforms baselines that use textual inputs alone. Further, we demonstrate that our model trained for this task on unlabelled videos achieves state-of-the-art performance on a number of downstream VideoQA benchmarks such as MSRVTT-QA, MSVD-QA, ActivityNet-QA and How2QA.
An LBYL (`Look Before You Leap) Network is proposed for end-to-end trainable one-stage visual grounding. The idea behind LBYL-Net is intuitive and straightforward: we follow a languages description to localize the target object based on its relative
This paper revisits feature pyramids networks (FPN) for one-stage detectors and points out that the success of FPN is due to its divide-and-conquer solution to the optimization problem in object detection rather than multi-scale feature fusion. From
Fact-centric information needs are rarely one-shot; users typically ask follow-up questions to explore a topic. In such a conversational setting, the users inputs are often incomplete, with entities or predicates left out, and ungrammatical phrases.
A panoptic driving perception system is an essential part of autonomous driving. A high-precision and real-time perception system can assist the vehicle in making the reasonable decision while driving. We present a panoptic driving perception network
Common fully glazed facades and transparent objects present architectural barriers and impede the mobility of people with low vision or blindness, for instance, a path detected behind a glass door is inaccessible unless it is correctly perceived and