ﻻ يوجد ملخص باللغة العربية
In the present work, we examine the potential robustness of extreme wave events associated with large amplitude fluctuations of the Peregrine soliton type, upon departure from the integrable analogue of the discrete nonlinear Schrodinger (DNLS) equation, namely the Ablowitz-Ladik (AL) model. Our model of choice will be the so-called Salerno model, which interpolates between the AL and the DNLS models. We find that rogue wave events essentially are drastically distorted even for very slight perturbations of the homotopic parameter connecting the two models off of the integrable limit. Our results suggest that the Peregrine soliton structure is a rather sensitive feature of the integrable limit, which may not persist under generic perturbations of the limiting integrable case.
We investigate the generation and propagation of solitary waves in the context of the Hertz chain and Toda lattice, with the aim to highlight the similarities, as well as differences between these systems. We begin by discussing the kinetic and poten
We report on the experimental study of an optically driven multimode semiconductor laser with 1~m cavity length. We observed a spatiotemporal regime where real time measurements reveal very high intensity peaks in the laser field. Such a regime, whic
We study experimentally, in a large-scale basin, the propagation of unidirectional deep water gravity waves stochastically modulated in phase. We observe the emergence of nonlinear localized structures that evolve on a stochastic wave background. Suc
We perform a numerical study of the initial-boundary value problem, with vanishing boundary conditions, of a driven nonlinear Schrodinger equation (NLS) with linear damping and a Gaussian driver. We identify Peregrine-like rogue waveforms, excited by
Based on the notion of Darboux-KP chain hierarchy and its invariant submanifolds we construct some class of constraints compatible with integrable lattices. Some simple examples are given.