ﻻ يوجد ملخص باللغة العربية
In this paper, we address the problem of makeup transfer, which aims at transplanting the makeup from the reference face to the source face while preserving the identity of the source. Existing makeup transfer methods have made notable progress in generating realistic makeup faces, but do not perform well in terms of color fidelity and spatial transformation. To tackle these issues, we propose a novel Facial Attribute Transformer (FAT) and its variant Spatial FAT for high-quality makeup transfer. Drawing inspirations from the Transformer in NLP, FAT is able to model the semantic correspondences and interactions between the source face and reference face, and then precisely estimate and transfer the facial attributes. To further facilitate shape deformation and transformation of facial parts, we also integrate thin plate splines (TPS) into FAT, thus creating Spatial FAT, which is the first method that can transfer geometric attributes in addition to color and texture. Extensive qualitative and quantitative experiments demonstrate the effectiveness and superiority of our proposed FATs in the following aspects: (1) ensuring high-fidelity color transfer; (2) allowing for geometric transformation of facial parts; (3) handling facial variations (such as poses and shadows) and (4) supporting high-resolution face generation.
In recent years, virtual makeup applications have become more and more popular. However, it is still challenging to propose a robust makeup transfer method in the real-world environment. Current makeup transfer methods mostly work well on good-condit
In this paper, we address the makeup transfer and removal tasks simultaneously, which aim to transfer the makeup from a reference image to a source image and remove the makeup from the with-makeup image respectively. Existing methods have achieved mu
Recently, due to the collection of large scale 3D face models, as well as the advent of deep learning, a significant progress has been made in the field of 3D face alignment in-the-wild. That is, many methods have been proposed that establish sparse
Facial expression recognition (FER) has received increasing interest in computer vision. We propose the TransFER model which can learn rich relation-aware local representations. It mainly consists of three components: Multi-Attention Dropping (MAD),
Social presence, the feeling of being there with a real person, will fuel the next generation of communication systems driven by digital humans in virtual reality (VR). The best 3D video-realistic VR avatars that minimize the uncanny effect rely on p