ترغب بنشر مسار تعليمي؟ اضغط هنا

TransFER: Learning Relation-aware Facial Expression Representations with Transformers

114   0   0.0 ( 0 )
 نشر من قبل Fanglei Xue
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Facial expression recognition (FER) has received increasing interest in computer vision. We propose the TransFER model which can learn rich relation-aware local representations. It mainly consists of three components: Multi-Attention Dropping (MAD), ViT-FER, and Multi-head Self-Attention Dropping (MSAD). First, local patches play an important role in distinguishing various expressions, however, few existing works can locate discriminative and diverse local patches. This can cause serious problems when some patches are invisible due to pose variations or viewpoint changes. To address this issue, the MAD is proposed to randomly drop an attention map. Consequently, models are pushed to explore diverse local patches adaptively. Second, to build rich relations between different local patches, the Vision Transformers (ViT) are used in FER, called ViT-FER. Since the global scope is used to reinforce each local patch, a better representation is obtained to boost the FER performance. Thirdly, the multi-head self-attention allows ViT to jointly attend to features from different information subspaces at different positions. Given no explicit guidance, however, multiple self-attentions may extract similar relations. To address this, the MSAD is proposed to randomly drop one self-attention module. As a result, models are forced to learn rich relations among diverse local patches. Our proposed TransFER model outperforms the state-of-the-art methods on several FER benchmarks, showing its effectiveness and usefulness.



قيم البحث

اقرأ أيضاً

Facial expression transfer between two unpaired images is a challenging problem, as fine-grained expression is typically tangled with other facial attributes. Most existing methods treat expression transfer as an application of expression manipulatio n, and use predicted global expression, landmarks or action units (AUs) as a guidance. However, the prediction may be inaccurate, which limits the performance of transferring fine-grained expression. Instead of using an intermediate estimated guidance, we propose to explicitly transfer facial expression by directly mapping two unpaired input images to two synthesized images with swapped expressions. Specifically, considering AUs semantically describe fine-grained expression details, we propose a novel multi-class adversarial training method to disentangle input images into two types of fine-grained representations: AU-related feature and AU-free feature. Then, we can synthesize new images with preserved identities and swapped expressions by combining AU-free features with swapped AU-related features. Moreover, to obtain reliable expression transfer results of the unpaired input, we introduce a swap consistency loss to make the synthesized images and self-reconstructed images indistinguishable. Extensive experiments show that our approach outperforms the state-of-the-art expression manipulation methods for transferring fine-grained expressions while preserving other attributes including identity and pose.
Face images are subject to many different factors of variation, especially in unconstrained in-the-wild scenarios. For most tasks involving such images, e.g. expression recognition from video streams, having enough labeled data is prohibitively expen sive. One common strategy to tackle such a problem is to learn disentangled representations for the different factors of variation of the observed data using adversarial learning. In this paper, we use a formulation of the adversarial loss to learn disentangled representations for face images. The used model facilitates learning on single-task datasets and improves the state-of-the-art in expression recognition with an accuracy of60.53%on the AffectNetdataset, without using any additional data.
This paper targets to explore the inter-subject variations eliminated facial expression representation in the compressed video domain. Most of the previous methods process the RGB images of a sequence, while the off-the-shelf and valuable expression- related muscle movement already embedded in the compression format. In the up to two orders of magnitude compressed domain, we can explicitly infer the expression from the residual frames and possible to extract identity factors from the I frame with a pre-trained face recognition network. By enforcing the marginal independent of them, the expression feature is expected to be purer for the expression and be robust to identity shifts. We do not need the identity label or multiple expression samples from the same person for identity elimination. Moreover, when the apex frame is annotated in the dataset, the complementary constraint can be further added to regularize the feature-level game. In testing, only the compressed residual frames are required to achieve expression prediction. Our solution can achieve comparable or better performance than the recent decoded image based methods on the typical FER benchmarks with about 3$times$ faster inference with compressed data.
68 - Keyu Yan 2018
Cross-database non-frontal expression recognition is a very meaningful but rather difficult subject in the fields of computer vision and affect computing. In this paper, we proposed a novel transductive deep transfer learning architecture based on wi dely used VGGface16-Net for this problem. In this framework, the VGGface16-Net is used to jointly learn an common optimal nonlinear discriminative features from the non-frontal facial expression samples between the source and target databases and then we design a novel transductive transfer layer to deal with the cross-database non-frontal facial expression classification task. In order to validate the performance of the proposed transductive deep transfer learning networks, we present extensive crossdatabase experiments on two famous available facial expression databases, namely the BU-3DEF and the Multi-PIE database. The final experimental results show that our transductive deep transfer network outperforms the state-of-the-art cross-database facial expression recognition methods.
104 - Tao Pu , Tianshui Chen , Yuan Xie 2020
Recognizing human emotion/expressions automatically is quite an expected ability for intelligent robotics, as it can promote better communication and cooperation with humans. Current deep-learning-based algorithms may achieve impressive performance i n some lab-controlled environments, but they always fail to recognize the expressions accurately for the uncontrolled in-the-wild situation. Fortunately, facial action units (AU) describe subtle facial behaviors, and they can help distinguish uncertain and ambiguous expressions. In this work, we explore the correlations among the action units and facial expressions, and devise an AU-Expression Knowledge Constrained Representation Learning (AUE-CRL) framework to learn the AU representations without AU annotations and adaptively use representations to facilitate facial expression recognition. Specifically, it leverages AU-expression correlations to guide the learning of the AU classifiers, and thus it can obtain AU representations without incurring any AU annotations. Then, it introduces a knowledge-guided attention mechanism that mines useful AU representations under the constraint of AU-expression correlations. In this way, the framework can capture local discriminative and complementary features to enhance facial representation for facial expression recognition. We conduct experiments on the challenging uncontrolled datasets to demonstrate the superiority of the proposed framework over current state-of-the-art methods. Codes and trained models are available at https://github.com/HCPLab-SYSU/AUE-CRL.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا