ﻻ يوجد ملخص باللغة العربية
In recent years, virtual makeup applications have become more and more popular. However, it is still challenging to propose a robust makeup transfer method in the real-world environment. Current makeup transfer methods mostly work well on good-conditioned clean makeup images, but transferring makeup that exhibits shadow and occlusion is not satisfying. To alleviate it, we propose a novel makeup transfer method, called 3D-Aware Shadow and Occlusion Robust GAN (SOGAN). Given the source and the reference faces, we first fit a 3D face model and then disentangle the faces into shape and texture. In the texture branch, we map the texture to the UV space and design a UV texture generator to transfer the makeup. Since human faces are symmetrical in the UV space, we can conveniently remove the undesired shadow and occlusion from the reference image by carefully designing a Flip Attention Module (FAM). After obtaining cleaner makeup features from the reference image, a Makeup Transfer Module (MTM) is introduced to perform accurate makeup transfer. The qualitative and quantitative experiments demonstrate that our SOGAN not only achieves superior results in shadow and occlusion situations but also performs well in large pose and expression variations.
In this paper, we address the problem of makeup transfer, which aims at transplanting the makeup from the reference face to the source face while preserving the identity of the source. Existing makeup transfer methods have made notable progress in ge
In this paper, we address the makeup transfer and removal tasks simultaneously, which aim to transfer the makeup from a reference image to a source image and remove the makeup from the with-makeup image respectively. Existing methods have achieved mu
Monocular 3D object parsing is highly desirable in various scenarios including occlusion reasoning and holistic scene interpretation. We present a deep convolutional neural network (CNN) architecture to localize semantic parts in 2D image and 3D spac
Occlusion removal is an interesting application of image enhancement, for which, existing work suggests manually-annotated or domain-specific occlusion removal. No work tries to address automatic occlusion detection and removal as a context-aware gen
Conventional video inpainting is neither object-oriented nor occlusion-aware, making it liable to obvious artifacts when large occluded object regions are inpainted. This paper presents occlusion-aware video object inpainting, which recovers both the