ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain control of the metal-insulator transition in epitaxial SrCrO$_{3}$ thin films

251   0   0.0 ( 0 )
 نشر من قبل Matthew Dawber
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the perovskite oxide SrCrO$_{3}$ the interplay between crystal structure, strain and orbital ordering enables a transition from a metallic to an insulating electronic structure under certain conditions. We identified a narrow window of oxygen partial pressure in which highly strained SrCrO$_{3}$ thin films can be grown using radio-frequency (RF) off-axis magnetron sputtering on three different substrates, (LaAlO$_{3}$)$_{0.3}$-(Sr$_{2}$TaAlO$_{6}$)$_{0.7}$ (LSAT), SrTiO$_{3}$ (STO) and DyScO$_{3}$ (DSO). X-ray diffraction and atomic force microscopy confirmed the quality of the films and a metal-insulator transition driven by the substrate induced strain was demonstrated.



قيم البحث

اقرأ أيضاً

Understanding of the metal-insulator transition (MIT) in correlated transition-metal oxides is a fascinating topic in condensed matter physics and a precise control of such transitions plays a key role in developing novel electronic devices. Here we report an effective tuning of the MIT in epitaxial SrVO3 (SVO) films by expanding the out-of-plane lattice constant without changing in-plane lattice parameters, through helium ion irradiation. Upon increase of the ion fluence, we observe a MIT with a crossover from metallic to insulating state in SVO films. A combination of transport and magnetoresistance measurements in SVO at low temperatures reveals that the observed MIT is mainly ascribed to electron-electron interactions rather than disorder-induced localization. Moreover, these results are well supported by the combination of density functional theory and dynamical mean field theory (DFT+DMFT) calculations, further confirming the decrease of the bandwidth and the enhanced electron-electron interactions resulting from the expansion of out-of-plane lattice constant. These findings provide new insights into the understanding of MIT in correlated oxides and perspectives for the design of unexpected functional devices based on strongly correlated electrons.
180 - Jian Liu , M. Kareev , B. Gray 2010
We have synthesized epitaxial NdNiO$_{3}$ ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO$_{3}$ (001) and LaAlO$_3$ (001), respectively. A combination of X-ray diffraction, temperature dependent resistiv ity, and soft X-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO$_{3}$, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior.
153 - D. Meyers , S. Middey , M. Kareev 2013
Ultrathin epitaxial films of EuNiO3 were grown on a series of substrates traversing highly compressive (- 2.4%) to highly tensile (2.5%) lattice mismatch. X-ray diffraction measurements showed the expected c-lattice parameter shift for compressive st rain, but no detectable shift for tensilely strained substrates, while reciprocal space mapping confirmed the tensile strained film maintained epitaxial coherence. Transport measurements showed a successively (from tensile to compressive) lower resistance and a complete suppression of the metalinsulator transition at highly compressive lattice mismatch. Corroborating these findings, X-ray absorption spectroscopy measurements revealed a strong multiplet splitting in the tensile samples that progressively weakens with increasing compressive strain that, combined with cluster calculations, showed enhanced covalence between Ni-d and O-p orbitals leads to the metallic state.
It has been well established that both in bulk at ambient pressure and for films under modest strains, cubic SrCoO$_{3-delta}$ ($delta < 0.2$) is a ferromagnetic metal. Recent theoretical work, however, indicates that a magnetic phase transition to a n antiferromagnetic structure could occur under large strain accompanied by a metal-insulator transition. We have observed a strain-induced ferromagnetic to antiferromagnetic phase transition in SrCoO$_{3-delta}$ films grown on DyScO$_3$ substrates, which provide a large tensile epitaxial strain, as compared to ferromagnetic films under lower tensile strain on SrTiO$_3$ substrates. Magnetometry results demonstrate the existence of antiferromagnetic spin correlations and neutron diffraction experiments provide a direct evidence for a G-type antiferromagnetic structure with Neel temperatures between $T_N sim 135,pm,10,K$ and $sim 325,pm,10,K$ depending on the oxygen content of the samples. Therefore, our data experimentally confirm the predicted strain-induced magnetic phase transition to an antiferromagnetic state for SrCoO$_{3-delta}$ thin films under large epitaxial strain.
Heteroepitaxy offers a new type of control mechanism for the crystal structure, the electronic correlations, and thus the functional properties of transition-metal oxides. Here, we combine electrical transport measurements, high-resolution scanning t ransmission electron microscopy (STEM), and density functional theory (DFT) to investigate the evolution of the metal-to-insulator transition (MIT) in NdNiO$_3$ films as a function of film thickness and NdGaO$_3$ substrate crystallographic orientation. We find that for two different substrate facets, orthorhombic (101) and (011), modifications of the NiO$_6$ octahedral network are key for tuning the transition temperature $T_{text{MIT}}$ over a wide temperature range. A comparison of films of identical thickness reveals that growth on [101]-oriented substrates generally results in a higher $T_{text{MIT}}$, which can be attributed to an enhanced bond-disproportionation as revealed by the DFT+$U$ calculations, and a tendency of [011]-oriented films to formation of structural defects and stabilization of non-equilibrium phases. Our results provide insights into the structure-property relationship of a correlated electron system and its evolution at microscopic length scales and give new perspectives for the epitaxial control of macroscopic phases in metal-oxide heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا