ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of the metal-insulator transition in NdNiO$_3$ thin films through the interplay between structural and electronic properties

96   0   0.0 ( 0 )
 نشر من قبل Eva Benckiser
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Heteroepitaxy offers a new type of control mechanism for the crystal structure, the electronic correlations, and thus the functional properties of transition-metal oxides. Here, we combine electrical transport measurements, high-resolution scanning transmission electron microscopy (STEM), and density functional theory (DFT) to investigate the evolution of the metal-to-insulator transition (MIT) in NdNiO$_3$ films as a function of film thickness and NdGaO$_3$ substrate crystallographic orientation. We find that for two different substrate facets, orthorhombic (101) and (011), modifications of the NiO$_6$ octahedral network are key for tuning the transition temperature $T_{text{MIT}}$ over a wide temperature range. A comparison of films of identical thickness reveals that growth on [101]-oriented substrates generally results in a higher $T_{text{MIT}}$, which can be attributed to an enhanced bond-disproportionation as revealed by the DFT+$U$ calculations, and a tendency of [011]-oriented films to formation of structural defects and stabilization of non-equilibrium phases. Our results provide insights into the structure-property relationship of a correlated electron system and its evolution at microscopic length scales and give new perspectives for the epitaxial control of macroscopic phases in metal-oxide heterostructures.



قيم البحث

اقرأ أيضاً

We have investigated the temperature driven first order metal-insulator (M-I) transition in thin films of NdNiO$_3$ and have compared it with the bulk behavior. The M-I transition of thin films is sensitive to epitaxial strain and a partial relaxatio n of epitaxial strain creates an inhomogeneous strain field in the films which broadens the M-I transition. Both the thin film and the bulk samples exhibit non equilibrium features in the transition regime which are attributed to the presence of high temperature metallic phases in their supercooled state. The degree of supercooling in the thin films is found to be much smaller than in the bulk which suggests that the metal insulator transition in the thin film occurs through heterogeneous nucleation.
285 - Sieu D. Ha , Gulgun H. Aydogdu , 2011
The correlated oxide SmNiO3 (SNO) exhibits an insulator to metal transition (MIT) at 130 {deg}C in bulk form. We report on synthesis and electron transport in SNO films deposited on LaAlO3 (LAO) and Si single crystals. X-ray diffraction studies show that compressively strained single-phase SNO grows epitaxially on LAO while on Si, mixed oxide phases are observed. MIT is observed in resistance-temperature measurements in films grown on both substrates, with charge transport in-plane for LAO/SNO films and out-of-plane for Si/SNO films. Electrically-driven memristive behavior is realized in LAO/SNO films, suggesting that SNO may be relevant for neuromorphic devices.
While structure refinement is routinely achieved for simple bulk materials, the accurate structural determination still poses challenges for thin films due on the one hand to the small amount of material deposited on the thicker substrate and, on the other hand, to the intricate epitaxial relationships that substantially complicate standard X-ray diffraction analysis. Using a combined approach, we analyze the crystal structure of epitaxial LaVO$_3$ thin films grown on (100)-oriented SrTiO$_3$. Transmission electron microscopy study reveals that the thin films are epitaxially grown on SrTiO$_3$ and points to the presence of 90$^{circ}$ oriented domains. The mapping of the reciprocal space obtained by high resolution X-ray diffraction permits refinement of the lattice parameters. We finally deduce that strain accommodation imposes a monoclinic structure onto the LaVO$_3$ film. The reciprocal space maps are numerically processed and the extracted data computed to refine the atomic positions, which are compared to those obtained using precession electron diffraction tomography. We discuss the obtained results and our methodological approach as a promising thin film structure determination for complex systems.
In the perovskite oxide SrCrO$_{3}$ the interplay between crystal structure, strain and orbital ordering enables a transition from a metallic to an insulating electronic structure under certain conditions. We identified a narrow window of oxygen part ial pressure in which highly strained SrCrO$_{3}$ thin films can be grown using radio-frequency (RF) off-axis magnetron sputtering on three different substrates, (LaAlO$_{3}$)$_{0.3}$-(Sr$_{2}$TaAlO$_{6}$)$_{0.7}$ (LSAT), SrTiO$_{3}$ (STO) and DyScO$_{3}$ (DSO). X-ray diffraction and atomic force microscopy confirmed the quality of the films and a metal-insulator transition driven by the substrate induced strain was demonstrated.
High-quality (001)-oriented (pseudo-cubic notation) ferromagnetic YTiO$_3$ thin films were epitaxially synthesized in a layer-by-layer way by pulsed laser deposition. Structural, magnetic and electronic properties were characterized by reflection-hig h-energy-electron-diffraction, X-ray diffraction, vibrating sample magnetometry, and element-resolved resonant soft X-ray absorption spectroscopy. To reveal ferromagnetism of the constituent titanium ions, X-ray magnetic circular dichroism spectroscopy was carried out using four detection modes probing complimentary spatial scale, which overcomes a challenge of probing ferromagnetic titanium with pure Ti3+(3d$^1$). Our work provides a pathway to distinguish between the roles of titanium and A-site magnetic rare-earth cations in determining the magnetism in rare-earth titanates thin films and heterostructures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا